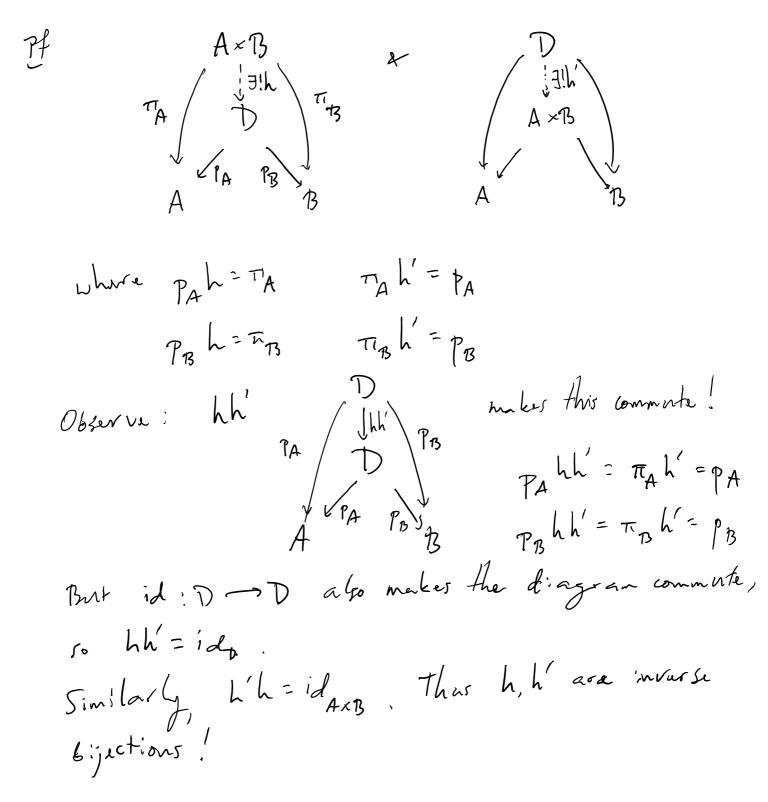
Lectura 21

Monday, March 2, 2015 9:59 AM

Products In sets what characterites A×B? Get h: C -> A×B $c \mapsto (f(c), g(c))$ $n_A h = f$ TTBh=g g (c) But wait, thurs's more! I is unique If h': C -> Axis makes the diagram commute, then h=h'. Now supposed D is some other set equipped w/ PA/ PB $f \xrightarrow{C} g = f!h: C \xrightarrow{\to} D \quad s.t. \quad p_A h = f$ 5.1 whenever P3h =7 Claim Then $D \cong A \times B$



Monday, March 2, 2015 10:16 AM

For groups G, H is there a group w/ the same
universal property (all fas replaced by gp homs)?
Natural guess: G × H, (g,h)·(g',h') = (gg', hh')
Tag(gh) TH
G Z hH
Check Ta, TH are homomorphisms.
Now assume we have a gp A and homs f, g
fifting into

$$f (g,h) = (f(a), g(a))$$

Is h a hom? h(ab) = (f(ab), g(ab))
= (f(a), g(a))(f(b), g(b)) V
h is unique 6/c of the LAW property for x of sets!

A category C consists of a collection of objects
O6 C and for each A, B
$$\in$$
 Ob C, a morphism
set $C(A, B) = Hom_{e}(A, B)$ (which we think of as
"acrows' $A \xrightarrow{f} B$, $f \in C(A, B)$) and $\forall A, B, C \in$
Ob C, $\circ : C(B, C) \times C(A, B) \longrightarrow C(A, C)$
the composition of morphisms. These satisfy
(D) composition associativity:
 $f \circ (g \circ h) = (f \circ g) \circ h$
whenever this makes sense
(D) identity: $\forall A \in Ob \ C, \exists id_{A} \in C(A, A)$ s.t.
 $\forall f \in \mathcal{E}(A, B), g \in C(B, A), A \xrightarrow{f} B$
 $f \circ id_{A} = f, id_{A} \circ g = g$
 $id \uparrow f = B \xrightarrow{f} A$

e.g.
$$C = Set$$
 $Ob \ C = sets$
 $C(A, B) = \{f_{ns} \ A \rightarrow B\}$
 $C = Gp$ $Ob \ C = groups$
 $C(G, H) = \{homomorphisms \ G \rightarrow H\}$
similarly, Ab cat of ab gps
 $Fin \ Gp$ cat of finite groups
 $C = Vbct$
 $C =$

$$C = M_{ot} \qquad Ob \ C = Z^{+}$$

$$m \times n = m + n \quad C(m, n) = \{n \times m \text{ matrices} \}$$

$$o = m_{o} \text{trix mult.}$$

$$C(n, p) \times C(m, n) \longrightarrow C(m, p)$$

Cartasian products of sets & direct product of get
are examples of categorical products.
For A,BEOBC, a triple (C,
$$\pi_A$$
, π_B)
consisting of CEOBC, $\pi_A \in C(C, A)$, $\pi_B \in C(C, B)$
is the product of A & B if $\forall D \in ObC$,
fe C(D, A), ge C(D, B), $\exists !h \in C(D, C) = t$.

$$f \begin{pmatrix} \downarrow h \\ C \\ A \end{pmatrix} = \frac{\pi_B \cdot h}{g} = \frac{\pi_B \cdot h}{\pi_B \cdot h} = \frac{\pi_B \cdot h}{g} =$$

