Lacture 20
Friday, February 27, 2015 10:05 AM

Prop If G is a group of order 30, thun

FN &G W/ N= 715.

If Any NEG of order 15 is of index 2 and thus automatically normal.

Morsover, 15=3.5. Since 3/5-1=4, we know any such go is cyclic of order 15.

Let PeSyls (G), QESyls (G). PrQ=1.

If Pagor QaG

|PQ| = \frac{1911Q1}{190Q1} = 15.

Assume $P,Q \nleq G$. Then $n_5 = G$, $n_3 = 10$ by Sylow \Im . $\lceil n_p = 1 \pmod{p}, n_p \rceil m$ where \rceil

If [G:H] = 2, then

G/H = {H, gH}

H/G = {H, Hg'},

Effices to show gH = Hg'.

Since G=H 11 gH,

gH=G\H. Similarly,

Hg'=G\H.

Elty of order 5: 4.6=24 _n _ 3: 2.10=20

44 elts of a group of order 30. 2.

Lemma H, $K \leq G$, |H| = p, |K| = q, $p \neq q$ prime. Then $H \cap K = 1$.

If Assume for & Jx #1 e HnK, Since xett

[x1|p => 1x1=p. Similarly, 1x1=q. 2. []

Lemma H, H' = G, |H| = p = |H'|, then
either Hall'= I or H=H', []

Thus An is simple for n >, 5. It by induction on n. We have already shown As is simple. Assume no, 6. let G=An. $G \subset \underline{n} = \{1, 2, ..., n\}$ Let G := isotropy gp of i. For i en. Then $G_i \stackrel{\sim}{=} A_{n-1}$ for any $i \in \underline{n}$.

By induction hypothesis, G_i is simple for $i \in \underline{n}$. Assume for & that JH &G s.f. 1, G & H. We'll first show that VTEHISIS. T(i) + i tor any i en Assume for 2 3 = EHISIS s.l. T(i)=i for some : En Thun teG;nH &G; => G;nH=G; => G; \text{\$\frac{1}{2}\$} \text{\$\frac{1}{2} Now for rea, o G, r'= Go(i) (check) so Vi. σ G; σ' ≤ σ H σ' = H i.s. Go(j) & H tjen. Take $\lambda \in A_n$ and write it as a product of ar num to of transportions, i.e. $\lambda = \lambda_1 \lambda_2 - \lambda_4$ where each λ ; is the product of 2 transportions.

Friday, February 27, 2015 10:36 AM

Each λ_k fixes $\geq n-4$ ≥ 2 ells of \underline{n} (a b) (c d)

Thus $\lambda_k \in G_j$ for some $j \in \underline{n}$. $G = \langle G_1, G_2, ..., G_n \rangle \leq H$ $\langle \{3-cycles\} \rangle = G = A_n$ Every 3-cycles is in some G_i b(c, n), H

So any \tell fixes nothing in n, i.e.

\tell G: \tien.

It follows that if $\tau_i, \tau_i \in H$ and $\tau_i(i) = \tau_i(i)$ for some i, then $\tau_i = \tau_i$. [look at $\tau_i' = \tau_i(i) = i$] $\Rightarrow \tau_i' = t$

claim V T EH, the cycle decomposition of a only contains 2-cycles.

For Q, assume $\tau \in H$, $\tau = (a, a_2 a_3 \cdots)(b, b_n)$ in its cycle decomp.

Take $\sigma \in G$ st. $\tau(a_1) = a_1$, $\sigma(a_2) = a_2$, $\tau(a_3) \neq a_3$. (σ exists b/c n7,5: $\sigma = (a_3 b c)$, $b,c \in n \setminus \{a_1,a_2\}$.) Thun $\tau_1 = \sigma \tau \sigma' = (\sigma(a_1) \sigma(a_2) \tau(a_3) \cdots)(\sigma(b_1) \sigma(b_1) \sigma(b_2) \cdots$ = $(a, a_2 \sigma(a_3)\cdots)\cdots$ $= 7 + \tau_1 \in H$ and $\tau(a_1) = \tau_1(a_1) = a_2$. We now know z EH- ? ! }, then $\tau = (a, a_1)(a_3, a_4)(a_5, a_6) \cdots$ Take 0= (a, az) (az as) + (a Then $\tau_1 = \sigma \tau \tau^{-1} = (\sigma(a_1) \sigma(a_2))(\sigma(a_3) \sigma(a_4))$ $(\sigma(a_5) \sigma(a_4)) \cdots$ $= (a_1 \ a_2)(a_5 \ a_4)(a_3 \ a_4)\cdots$ Then $\tau, \tau, \epsilon H$ and $\tau(a_i) = \tau_i(a_i) = a_2$. Thus Head = H=1 or G. I.s. Gissimph.

<u>__</u>(