1) exits of

Prop If H&G, then Gaetron Hvi-conjugation: geG, hFH, g*h = ghgil eH by normality.

Thur we get A: G - Aut (H)

has kernel Ca(H). Thus by 1st iso thm

 $G/C_{G}(H) \stackrel{\sim}{=} im(H) \leq Aut(H).$

conjg (hk) = ghkg" = (ghg//gkg")

conjq (h) conjq (k).

conjq is a 2-sided inverse of conjq => conjq = Ant(H)

kur (H) =
$$\{g \in G \mid anjg = id\}$$

= $\{g \in G \mid ghg' = h \mid \forall h \in H\}$
= $C_G(H)$. II
Cor If $K \leq G$, then $K \cong gkg' \mid \forall g \in G$.
Cor If $H \leq G$, then $N_G(H)/C_G(H) \cong subgr of$
 $Aart(H)$
 $G/Z(G) \cong subgr of$
 $Aart(G)$.
Take $H = G$
 $C_G(G) = Z(G)$ D
Define $Inn(G) = innur automorphisms of G$
= $\{conjugation automorphisms of G\}$
 $Note$ $Inn(G) \cong G/Z(G)$.
 $Conj_G \iff g^2(G)$

$$G = Q_g$$
 $G = \{-1\} = \{\pm 1\}$

$$Q_{8/\{t,l\}} = Z_{2} \times Z_{2} = Inn(Q_{8})$$

. If
$$H \leq G \neq H = Z_2$$
, then $Aut(H) = 1$

$$= N_G(H) / C_G(H) \implies N_G(H) = C_G(H)$$

o If
$$H \leq G$$
, $H = Z_2$, then $N_G(H) = G$
so $C_G(H) = N_G(H) = G$ this
 $H \leq Z(G)$

Aside
$$\varphi \in Acit(G)$$
 is inner if $\exists g \in G$ s.t.
 $\varphi = conj_g$

$$G = \left| \operatorname{Inn}(G) \right| = \left[G : 7(G) \right]$$

Prop Aut
$$(Z_n) \cong (\mathcal{H}_n \mathcal{H}_n)^{\times}$$

In particular, Aut (Z_n) is abolism of order (Y_n) , $(Y_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(Y_n) : \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n) = \{x \in \mathbb{Z}^+ \mid (a,n) = 1\}$
 $(X_n$

Is
$$\overline{A}$$
 a homomorphism? $\overline{A}(H_a \circ H_b) \stackrel{?}{=} \overline{A}(H_a) \cdot \overline{A}(H_b)$
 $\overline{A} \circ \overline{A} \circ \overline{$

$$x \mapsto x^{b} \mapsto (x^{b})^{a} = x^{ab}$$

$$x \mapsto x^{b} \mapsto (x^{b})^{a} = x^{ab}$$

$$y_{ab}$$