Lecture 14

Tuesday, February 17, 2015

$$= \left\{ g \right\} \times \left\{ g \times G \right\}$$

$$= \{g \mid g \in x H x^{-1} \forall x \in G \}$$

$$= \bigcap_{x \in G} \times Hx^{-1} . \qquad \square$$

Con G finite gp of order n & let p be the smallest prime dividing n. If HEG & [G: H]= p. then H & G.

Pf $K = kur(\pi_H) = \bigcap_{x \in G} xHx^{-1} \leq H$ let [H:K]=k.

Then
$$[G:K] = [G:H][H:K] = pk$$
.
 $G/K \cong subgp of S_p = im(\pi_{\mu}: G \rightarrow S_{G/H})$

Thus
$$pk | |5p| = p! \implies k | (p-1)!$$

(primer factors (p) .

Since $k | |G| & p$ smallest prime factor of $|G|$,

 $k = 1$. $H = K \implies H \leq G$.

Tuesday, February 17, 2015

3 | { conjugates
$$s \in G$$
 } | = [G: CG(s)].

Pf Orbit-stabilizer:
$$|Gx| = |G/G_x|$$
.

 $|G| = |G/G_s| = |G|G_s|$.

$$0 |G*S| = |G/G_S| = [G:N_G(S)]$$

Thun
$$\left|\left|\left(\mathcal{G}\right)\right| = \left|\left(\mathcal{F}\left(\mathcal{G}\right)\right)\right| + \sum_{i=1}^{r} \left[\left(\mathcal{G}: \mathcal{C}_{\mathcal{G}}\left(g_{i}\right)\right)\right]\right|$$

e.g.
$$G$$
 abelian. Then $Z(G) = G Z$ class eg'n G

(a)
$$G = Q_g$$
. $\langle i \rangle \stackrel{<}{=} C_{Q_g}(i) \stackrel{<}{=} Q_g$. $i \nmid Z(Q_g)$ blc $ij = k$, $ji = -k$. and $[Q_g: \langle i \rangle] = 2 \Longrightarrow C_{Q_g}(i) = \langle i \rangle$. Conjugates of i are i and $-i = kik^{-1}$. Get conjugates $\{i\}, \{-1\}, \{-i\}, \{\pm i\}, \{\pm i\}, \{\pm k\}$. Indeed $\{i\} = 2 + (2+2+2)$.

$$P = |Z(P)| + \sum_{i=1}^{r} [P:C_{p(q_i)}]$$

$$+1$$
 so $p[P:C_{p}(g:)]$
 $Z(P)=1$ would give $p'=1+p(\sim)$ Q .
In fact $p[1Z(P)]$.

Cor If
$$|P| = p^2$$
, p prime, then

 $P \cong \mathbb{Z}_{p^2}$ or $\mathbb{Z}_p \times \mathbb{Z}_p$.

In perticular, P is abelian.

Lumna If $G/Z(G)$ is cyclic, then G abelian.

PF Cor If $Z(P) \neq I$, then $P/Z(P)$ has order

1 or p and thus cyclic. By the lemma,

 P is abelian. If P has an elt of order P^2 ,

then $P \cong \mathbb{Z}_{p^2}$. Otherwise, every $P \cong P \cong P^2(P)$ has order P .

 $P \cong \mathbb{Z}_{p^2}$. Otherwise, every $P \cong P \cong P^2(P)$ has order $P \cong \mathbb{Z}_{p^2}$.

 $P \cong \mathbb{Z}_{p^2}$ Otherwise, every $P \cong \mathbb{Z}_{p^2}$.

If lemma. Suppose $G/Z(G) = \langle xZ(G) \rangle$.

Then wery elt of G is of the form $x^a Z$, $Z \in Z(G)$, $a \in Z$. $G, b \in Z$, $Z, u \in Z(G)$ Then $x^a Z \times^b N = x^a X^b Z N$ $= x^b X^a Z N$ $= x^b X^a Z N$