Lecture 12

-

Friday, February 13, 2015 10:01 AM

Friday, February 13, 2015 10:17 AM

Thus
$$1 = N_0 \leq N_1 \leq \cdots \leq N_n = N = G_0 \leq G_1 \leq \cdots \leq G_m = G$$

Norson, $G_{i+1}/G_i \cong (G_{i+1}/N)/(G_i/N) = \overline{G_{i+1}}/\overline{G_i}$
 3^{rd} ; so then
which is abolian.

The sign homomorphism & alternating group.
Defin A transposition in
$$S_n$$
 is a length 2 cycle.
 $\frac{r_{12}}{r_{22}}$ (3 5) $\in S_c$
Prop let $T = \{ \text{transpositions } \in S_n \}$. Then
 $\langle T \rangle = S_n$.
If Permutations have cycle decomps, so suffices to
write $(a_1 \ a_2 \ \cdots \ a_n)$ as a product of transing.
 $(a_1 \ a_m)(a_1 \ a_{m-1}) \ \cdots \ (a_1 \ a_2)$.

Friday, February 13, 2015 10:27 AM

Action
$$S_n \subset \mathbb{Z}[x_1, x_2, ..., x_n]$$

$$= \{ polynomials in X_{1,...,X_n} \\ w/ coeffs in \mathbb{Z} \}$$
defined by $\sigma f(x_1, x_2, ..., x_n)$

$$= f(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)}),$$
(et $\Delta = \prod (x_1 - x_1)$
 $(x_1 - x_2)$
 $(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$
 $x \in S_n, \quad \sigma : \Delta = \prod (x_{\sigma(1)} - x_{\sigma(1)}),$
 $|Sisjsn$
=3:

$$(1 2) \cdot \Delta = (x_2 - x_1)(x_2 - x_3)(x_1 - x_3)$$

Note All
$$(x_{\sigma(i)} - x_{\sigma(j)})$$
 are of the form
 $x_k - x_k$, $k < \lambda$ or $x_k - x_k$, $k < \lambda$

Thus
$$\sigma \cdot \Delta = \pm \Delta$$
.
Thus $\sigma \cdot \Delta = \pm \Delta$.
This For $\sigma \in S_n$, $\varepsilon(\sigma) = \frac{\sigma \cdot \Delta}{\Delta} = \begin{cases} 1 & if \sigma \Delta : \Delta \\ -1 & if \sigma \Delta : -\Delta \end{cases}$.
The $\varepsilon(\sigma) = 1$, call σ are $\varepsilon(\sigma) = 1$, call σ and $\varepsilon(\sigma) = -1$, call σ and σ and σ and σ and σ and σ and σ an

Friday, February 13, 2015 10:40 AM

Q

Swap (churge sign) of the
$$(x_{rij} - x_{rij})'s$$

 $\int j > i$ to get
 $\sigma \tau \Delta = c(\tau) c(\sigma) \Delta$
Defin the alternating group (on n letters)
is $A_n = \ker(\varepsilon: S_n \rightarrow f \tau I)$.
Facts $\cdot A_n$ is simple (nonabelian) gp for $n \gamma 5$.
 $\cdot [S_n : A_n] = 2$, in fact by $f \tau i \sigma \tau h m$
 $S_n / A_n \cong \{\tau I\}$ (at least if ε is surj)
 $\cdot |A_n| = \frac{1}{2}n!$
 $\cdot A_4 \cong gp of rigid transformations$
 $e((1 2)) = -1$
 $(\omega t \lambda = (1 i)(2 j)$. Then $\lambda(1 2) \lambda = (i j)$.

Friday, February 13, 2015 10:50 AM

Thus
$$e((:,j)) = e(\lambda((2)\lambda))$$

 $= e(\lambda) e((2)) e(\lambda)$
 $= e(\lambda)^2 \cdot (-1)$
 $= -1$
 $\operatorname{Prop} e(\operatorname{trans}) = -1 & e is surj. 1$

Note
$$A_n = g_p$$
 of even permutations
 $S_n \cdot A_n = set of odd permutations.$