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2. In this calculation, we use the norm N(a + bi) = a® + b*. To find each
gi, we calculate the element of Q[i] that is Z=2 = a + bi, and then set

7 i = |a} + [b)i”

8) 85 = —6i(1 +13i) + (7T —6))  N(1+13i)=170> 78 = N(7—6i)
%1 + 13i = i(7 - 6i) + (=5 + 6i) N(7—6i) > 61 = N(~5+61) /
77— 6i = —1(~5+6i) + 2 N(-5+6)>4=N@2) /
X —5+6i=(-2+3)2-1, N@)>1=N(-1) /

==

o2 243 =(2-3i)(—1) N(-1)>0 /
{Thus the (—1) is the greatest common divisor of 85 and 1+13i in Z[s]./

#.53 + 56i = (47 — 13d) + (40 + 9i) N (47 — 13§) = 2378 > 1681 = N (40 + 9%)

/i
-

Y 47 — 13i = (40 + 99) + (7 — 223) N(47 — 13i) > 533 = N(7 —~ 22i)
40 + 9i = i(7 — 224) + (18 + 2i) N(7 — 22) > 328 = N(18 + 2i)
7 =22 = —i(18 + 24) + (5 — 4i) N(18 + 2i) > 41 = N(5 — 4i)
18 + 2i = (2 + 2i)(5 — 4i) + 0 N(5—4i) >0

Thus the greatest commeon divisor of 53 + 56i and 47 — 13¢ is 5 — 4i. ./
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Problem 6. Let R be a commutative ring with 1 and let a, b be nonzero el-
ements of R. A least common multiple of a and b is an element e of R such
that
(i) a|eandb | e and
(ii) ifa | e’ and b | ¢, thene | ¢'.
(a) Prove that a least common multiple of a and b (if such exists) is a gen-
erator for the unique largest PID contained in (a} n (b).
) Deduce that any two nonzero elements in a Euclidean domain have a
' least common multiple which is unique up to multiplication by a unit.
(c) Prove that in a Euclidean domain the least common multiple of a and b
is -(-—5, where (a, b) is the greatest common divisor of a and b.

Answer:

(a) Given a pair a,b € R which has a least common multiple e, then since
a|eandd | e, eeaande € b and thus e € (a) n (b). Thus (e) =
(a) n (b). Let = € (a) n (b), which implies (z) € (a) n (b). Thena |
and b | z. By the definition of least common multiple, e | z. Thus,
(z) = (e. Therefore, there cannot be a principle ideal in (a} n (b) that
is not contained in (e). Thus, e is the generator of the unique largest
principle ideal contained in (a) N (b). \fﬁ

(b) Given two non-zero elements a,b in a Euclidean Domain R, since R
is a Euclidean Domain and hence a Principle Ideal Domain, the ideal
(a)n(b) is generated by a single element of R. Denote this generating el-
ement e. Since e € (a), a | € and similarly since e € (b), b | e. Moreover,
for an element ¢’ € R, such thata | €' and b | €, then e’ € (a) n (b) = (e).
Thus, e | €. Thus, any a,b € R admit a least common multiple. More-
over, if another element f is also a least common divisor for a and b,
thea | fand b | f, which implies e | f. By the same argument except
for swapping the roles of f and e, which we can do since both are least
common divisors, f | e. The first implication implies the gcd(e,f)=e
while the second implies ged(e,f)=f. Since the greatest common divisor
in a euclidean domain is unique up to multiplication by a unit, ev = f
for some unit © € R. Thus, the least common muI\tijrlg in a Euclidean
Domain is unique up to multiplication by a unit.

(c) First, note that since {a,b) | a and (a,b) | b, m = 0% W rm * b,
meaning a | GGTET and b | -(-—5 Since R is a euclidean domain, let
be the lowest common multlple for a and b. By definition of a lowest
common multiple, { | (-—5 Since a | {, let ak = . Multiplying both
sides by b shows abk = [b. Note thatsincea | aband b | ab, I | ab.
Thus, we divide by ! to demonstrate 8k = b, which means 4 g | b. Since
R is a commutative ring, a similar proof demonstrates % | a. By the
definition of a greatest common d1v1sor, | {a,b). Slnce (a,b) | ab, we



Problem 7. Let a and b be nonzero elements of a PID R. Prove that e and &
| has a least common multiple. Now assume that R is additionally a UFD.
b ) Describe the least common multiple of a and b in terms of the prime factor-

izations of ¢ and b. :

-, The proof in part (b} of the previous problem did not rely on the Euclidean
property of the domain except in its use of language implying division. We
still have any ideal in (a) n (b) principal (for nonzero a and b), and so it
is a PID, which means that (a) » (b) itself is generated by some element
e. Such an element e is a least common multiple because every common
multiple is in (a) n (b), and e generates that ideal! Every PID is a UFD, so
there is no need for an additional assumption. The least common multiple
ofa=pl'pe?---pirand b = p'{‘ ng - - p¥» (include the prime factors of bo
numbers, 50 a;, b; € Z30) is e = pi'p3? - - - p&» where e; = max{a;, b;}. /h



Problem 8. (a) Prove that the quotient ring Z{i]/(1 + i) is a field of order 2.

(b) Let g € Z be a prime with g = 3 (mod 4). Prove that the quotient ring
Z[il/(q) is a field with g> elements.

(c) Let p € Z be a prime with p = 1 (mod 4) and write p = 77 for some
# € Z[i). Prove that the hypotheses of the Chinese Remainder Theorem
are satisfied, and thus

Z{3)/(p) = Z[i]/(x) x Z[i]/(7)
as rings. Show that the ring Z[i]/(p) has order p? and that each of
Z[i)/(x), Z[3}/(7) is a field of order p.

Answer:

(a) Consider the principal ideal (1 + i) € R. Given an element (c + di)e R,
we have anelement a + bi € (1 +1i), (a+ b)) = (1 +4) +{c+di) =
(c — d) + (c + d)i, implying a = (¢ — d) and b = (c + d). Adding these
equalities demonstrates 2¢ = a + b. Given that c € Z, it must be the case
that if a + b € (1 + i), then 2 | a + b or put differently, a + b is even.
Note furthermore that given an element a + bi € R such thata + bis
even, then a + bi = (1+1) « (2F® + 2521), implying a + bi € (1 +1). Thus,
1 + 4 is composed of all elements a + bi € Rsuch that2 | a+b. Asall -



elements that do not have this property, i.e those elements z -+ yi where
T + y is odd, if we either add 1 or 4, then we get an element of Z[3] that
isin (1 + 7). Since Z[¢] is a euclidean domain, and 1 + i is an irreducible
element of Z[1], (1 #%) is a prime ideal in R. Thus, Z[{]/(1 + i) is a field
with order 2.

(b} Given a prime number g € Z such that ¢ = 3 (mod 4), we know that ¢
is an irreducible element in Z[7]. Since Z[3] is a euclidean domain, (g) is
a prime ideal. Thus, Z[4]/(q) is a field. Furthermore, given a + bi € (g),
thena+bi = (g)*(c+di) = gc+qdi. Thus,ifq | aand g | bif a+bi € (g).
Furthermore, given an element a + bi € Z[i] such that gk = e and ¢l = b
forsomek,le Z, thena+bi =gk +ql =gx(k+1) e (g). Thus, the
elements in (g) are all of the elements a + &i € Z[4] such that g | a and
g | b. Given any a + bi € Z[1], since Z is a euclidean domain, a = gk + r
and b = gl+s, wherer, s < q. Thus, a+bi+(g) = gk-+r+(gl+8)i+(q) =
T+ i+ (g). As there are q possible values of r and s, there are ¢ * g = g2
possible values a + bi could be. Also, given any r + si € Z[i]/(g), note
r+si-+{(q) does not reduce, thus all g2 possible values in r+ si € Z[i]/(q)
are mapped to by the reduction mapping. Thus, Z[i]/(q) is a field with
order qlgp l/ m%b& vse. c_:_f) I ot A

(c} Given a prime number p € Z such that p = 1 (mod 4), then there exists
a+bi € L[] such that p = (a +bi) » (a — bi) = a? + b*. Note furthermore,
from the result the demonstrated the previous that a + bi and a — bi
are irreducible elements of Z[:]. Thus, (a + bi) and (a — bi) are both
prime ideals in Z[{], and are thus co-maximal ideals. As these criterion
fulfill the hypotheses for the Chinese Remainder 'I'heor#ﬂs,e Z[il/p =
Z[i}/((a + bi) * (e — b7)) = Z[i]/(a + bi) x Z[i]/(a — bi). o show that
the order of Z[i)/p is p?, note that in the above proof with a prime ¢ = 3
{mod 4), we made no use of the fact that any other condition aside from
the primality of ¢ € Z-to demonstrate the ring Z[¢]/(g) had order ¢°.
Thus, the same proof shows Z[i]/p is a ring with order p?. Furthermore,
since (a + bi) and (a — bi) are prime ideal of Z[i], Z[i]/(a — bi) and
Z[i]/(a + bi) are both fields. Furthermore, since Z[i]/p = Z[i)/(a + bi) x
Z[i}/(a — bi), |Z[i]/p| = p* = |2[i)/(a + bi)| * {Z[i]/(a — bi)|. Since p is
irreducible and Z is a UFD, given ab = p?, either a = pand b = p, or
either a or bis 1. |Z[]/(a ~ bi)| = 1 if and only if (a — bi) is a unit. Since
(a — bi) is irreducible, |Z[i]/(a — bi)| = 1 # 1. As a similar préof shows
121/ (a + bi), # 1, 12/ + )| = Zl/la - =p. 4 0OC..



Challenge 9. An integral domain R in which every ideal generated B!' two
elements is principal is called a Bezout domain.

(a) Prove that the integral domain R is a Bezout domain if and only if every
pair of elements a, b € R has a greatest common divisor d in R that can
be written as an R-linear combination of a and .

(b) Prove that every finitely generated ideal of a Bezout domain is princi-

pal.



(c) Prove that R is a PID if and only if R is a UFD that is also a Bezout
domain. (We have proven in class that every PID is a UFD, and PIDs
are obviously Bezout domains. Thus it only remains for you to prove
that UFD’s which are Bezout domains are in fact PIDs. Let 0 # a €
1 = R where a has the minimal number of irreducible factors amongst
elements of I. Prove that I = (a) by showing that if there is an element
be I thatis not in (a), then (e, b) = (d) leads to a contradiction.

Answer:

(a} Given an integral domain R, in which all elements a,5 € Rhavea great-
est common divisor, d that can be written as an R-linear combination
of a and b, then d € (a,b). Thus, (d) € (a,b). Furthermore, since d | a
andd | b, a = dk and b = di for some k,! € R. Then given any R-linear
combination az + by, which by definition are the form of all elements of
(a,b), ax + by = dkz + dly = d» (kz +1y) € (d). Thus, (a,b) C (d), which
given the reverse inclusion demonstrates (a,b) = (d). Since R is a ring
where there exists a d for any pair a, b, the ideal generated by-any pair
of elements in R is a principle ideal i.c a Bezout domain. \/‘W[

Now suppose an integral domain R is a Bezout domain. Then for
all a,b € R, (a,b) = (d) for some d € R. Since a,b € (a,b), d | a and
d | b, meaning d is a common divisor for a and b. Furthermore, since
(d) € (a,b), d = az + by for some z,y € R. Now suppose an element
inRe | aand e | B Thenaand b are in (¢'), which further implies
az + by = d € (¢/)NThus, €' | d, concluding the proof that such a d is
a greatest common divisor of a, b, which can be written as an R-linear
combination of a and b. As such a d exists for all pairs a,b in R by
assumption, the reverse implication holds. o8d..

(b) Ideals generated by singleton sets are by deﬁnjh%n principle and all
ideals generated by two elements in R are principle by the definition of
a Bezout domain. Letting these cases be the base case for an inductive
proof, suppose that given a finite n € (N), ideals of R generated by
n — 1 elements is principle. Then given the ideal (z), 23, ..., zp_1, Zn), \//
for any z; € R, this is the set of R-linear combinations (a1*x1 +ag*zo +
v+ Qpo1Tp}) + an * T,, where a; € R. Since the inductive hypothesis
states that ideals of R generated by n — 1 elements are principle, there
exists a d in R such that for all R-linear combination a; * z; + aj * T +
wo +Qp_1Zn_) € (21, T2, vy Zp-1), dk = ay * 1y + az* Io + ...+ Gn_1Tn—1| /
forsome kin R. Thus, (a) *z; + az * zo + ... + On—1Tn_i) 4 Gp * T =
dk + ap * T,. That is, given any n elements of R, there exists a pair of
elements in R such that any linear combination of the n elements can be
written as a linear combination of the set of 2 elements, in other words,
an ideal generated by a set of n elements of R is also generated by a
pair of elements in R. Since R is a bezout domain, these ideals must



be principlc—if'hus by induction, all finitely generated ideals in R are
principle.

c) Suppose R is a UFD as well as a Bezout domain,and let0 # a € T 9 R,
where a has the minimal number of irreducible factors amongg# ele-
ments of . That is, e is an element of I such that there does not exist
and element d | q, for if there were, then d would have a smaller num-
ber of irreducible factors. Suppose there were b € I such that b ¢ (a).
Since both b and a are in I, (a,b) € I. Since R is a Bezout domain, there
exists d such that (a,b) = (d). Notably d € I since d € (a,b), which
means d is the result of an R-linear combination of a and b. Thus, d €'
and d | a. As we picked a to have a minimal number of irredugible
factors amongst elements of I, we have reached a contradictionl/Thus,
there cannot be b € I such that & ¢ (a), which concludes the proof that
I = (a) and hence principle for all 7 in R. Thus, a UFD that is also
a Bezout domain is a PID. As the reverse result has been previously
demonstrated, R is a PID if and only if R is a UFD as well as a Bezout

domain. a 0 )_‘



