MATH 332: HOMEWORK 8

Exercise 1. For each of the following pairs of integers a and b, use the Eu-
clidean algorithm to determine their greatest common divisor d and write
d as a linear combination ax + by of a and b.

(@) a = 20, b = 13.

(b) a =69,b=372.

(c) a =91442056588823, b = 779086434385541.

Problem 2. Find a generator for the ideal (85,1 + 137) in Z[¢], i.e., a greatest
common divisor for 85 and 1 + 13¢, by the Euclidean algorithm. Do the
same for the ideal (47 — 137,53 + 561).

Problem 3. Read pp.229-230 of the book on quadratic integer rings. Let F' =
Q(+v/'D) be a quadratic field and let O be its associated quadratic integer
ring. Let NV be its field norm.

(a) Suppose D = —3. Prove that O is a Euclidean domain with respect to
N. (You will likely need to show that every element of F' differs from
an element of O by an element show norm is at most 1/3 < 1.)

(b) Suppose that D = —163. Prove that O is not a Euclidean domain with
respect to any norm. (Apply a proof similar to the one in the book for
the case D = —19.)

Exercise 4. Prove that the quotient of a PID by a prime ideal is again a PID.

Problem 5. Let R be an integral domain and suppose that every prime ideal
in R is principal. Use the following outline to prove that every ideal in R is
principal, i.e., R is a PID.

(a) Assume that the set of ideals of R that are not principal is nonempty
and prove that this set has a maximal element under inclusion. By hy-
pothesis, this ideal is not prime. [Use Zorn’s lemma!]

(b) Let I be an ideal which is maximal with respect to being non principal,
and let a,b € Rwithab e I'buta ¢ I'andb ¢ I. Let I, = (I,a) and
let I, = (1,b). Define J = {r € R | rI, < I}. Prove that I, = (« and
J = (B) are principal ideals in Rwith I < I;, < J and I,J = (af) < 1.

(c) If z € I show that x = sa for some s € J. Deduce that I = [,J is
principal, a contradiction, and conclude that R is a PID.

Problem 6. Let R be a commutative ring with 1 and let a, b be nonzero el-
ements of R. A least common multiple of a and b is an element e of R such
that

(i) a | eand b | e, and
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(ii) ifa | ¢ and b | €, thene | €.
(a) Prove that a least common multiple of a and b (if such exists) is a gen-
erator for the unique largest PID contained in (a) n (b).
(b) Deduce that any two nonzero elements in a Euclidean domain have a
least common multiple which is unique up to multiplication by a unit.
(c) Prove that in a Euclidean domain the least common multiple of @ and b
is %, where (a, b) is the greatest common divisor of a and b.

Problem 7. Let a and b be nonzero elements of a PID R. Prove that a and
b has a least common multiple. Now assume hat R is additionally a UFD.
Describe the least common multiple of a and b in terms of the prime factor-
izations of a and b.

Problem 8. (a) Prove that the quotient ring Z[:]/(1 + ¢) is a field of order 2.

(b) Let ¢ € Z be a prime with ¢ = 3 (mod 4). Prove that the quotient ring
Z[i]/(q) is a field with ¢* elements.

(c) Let p € Z be a prime with p = 1 (mod 4) and write p = 77 for some
m € Z[i]. Prove that the hypotheses of the Chinese Remainder Theorem
are satisfied, and thus

Zlil/(p) = Z[i]/(7) x Z[i]/(T)
as rings. Show that the ring Z[i]/(p) has order p? and that each of
Z[i]/(m), Z[i]/(7) is a field of order p.

Challenge 9. An integral domain R in which every ideal generated by two
elements is principal is called a Bezout domain.

(a) Prove that the integral domain R is a Bezout domain if and only if every
pair of elements a,b € R has a greatest common divisor d in R that can
be written as an R-linear combination of a and b.

(b) Prove that every finitely generated ideal of a Bezout domain is princi-
pal.

(c) Prove that R is a PID if and only if R is a UFD that is also a Bezout
domain. (We have proven in class that every PID is a UFD, and PIDs
are obviously Bezout domains. Thus it only remains for you to prove
that UFD’s which are Bezout domains are in fact PIDs. Let 0 # a €
I < R where a has the minimal number of irreducible factors amongst
elements of I. Prove that I = (a) by showing that if there is an element
b € I thatis notin (a), then (a,b) = (d) leads to a contradiction.



