MATH 332: HOMEWORK 7

Exercise 1. Let *R* be a ring with 1. Prove that $(-1)^2 = 1 \in R$ and that if *u* is a unit in *R*, then -u is also a unit in *R*.

Exercise 2. Which of the following are subrings of \mathbb{Q} :

- (a) the set of rational numbers with odd denominators (when written in lowest terms),
- (b) the set of rational numbers with even denominators (when written in lowest terms),
- (c) the set of nonnegative rational numbers,
- (d) the set of squares of rational numbers,
- (e) the set of all rational numbers with odd numerators (when written in lowest terms).

Problem 3. An element *a* of a ring *R* is called *idempotent* if $a^2 = a$. A ring *R* is called *Boolean* if every element of *R* is idempotent. Prove that Boolean rings are commutative.

Exercise 4. Let *K* be a field. A *discrete valuation* on *K* is a function $v : K^{\times} \rightarrow \mathbb{Z}$ satisfying

- (i) v(ab) = v(a) + v(b) for all $a, b \in K^{\times}$ (*i.e.*, v is a homomorphism [think logarithm!]),
- (ii) v is surjective, and
- (iii) $v(x+y) \ge \min\{v(x), v(y)\}$ for all $x, y \in K^{\times}$ with $x + y \ne 0$.

The set $\mathcal{O}_v = \{x \in K^{\times} \mid v(x) \ge 0\} \cup \{0\}$ is called the *valuation ring* of v.

- (a) Prove that \mathcal{O}_v is a subring of *K* containing 1.
- (b) Prove that for each $x \in K^{\times}$, x or x^{-1} is in \mathcal{O}_v .
- (c) Prove that an element x is a unit of \mathcal{O}_v if and only if v(x) = 0.

Problem 5. Fix a prime p and define $v_p : \mathbb{Q}^{\times} \to \mathbb{Z}$ by $v_p(a/b) = \alpha$ where $a/b = p^{\alpha} \cdot c/d$ where $p \nmid c$ and $p \nmid d$. Prove that v_p is a valuation, then prove that

$$\mathcal{O}_{v_p} = \{ a/b \in \mathbb{Q} \mid (p,b) = 1 \}.$$

Finally, determine exactly what rational numbers constitute $\mathcal{O}_{v_p}^{\times}$, the units in \mathcal{O}_{v_p} .

Remark. The ring \mathcal{O}_{v_p} above is frequently called $\mathbb{Z}_{(p)}$, the ring of *p*-local integers. Look at exercises 3 and 6 on p.238 of the book for another interesting example of a valuation and valuation ring.

Date: 30.III.15.

Problem 6. Let $G = \{g_1, g_2, \dots, g_n\}$ be a finite group. Define the element $N = g_1 + g_2 + \dots + g_n$, an element of the group ring $\mathbb{Z}G$. Prove that *N* is in the center of $\mathbb{Z}G$.

Challenge 7. Prove that the rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are not isomorphic.

Exercise 8. Decide which of the following are ideals of the ring $\mathbb{Z}[x]$:

- (a) the set of all polynomials whose constant term is a multiple of 3,
- (b) the set of all polynomials whose coefficient of x^2 is a multiple of 3,
- (c) the set of all polynomials whose constant term, coefficient of x, and coefficient of x^2 are zero,
- (d) $\mathbb{Z}[x^2]$, the set of polynomials in which only even powers of x appear,
- (e) the set of polynomials whose coefficients sum to 0,
- (f) the set of polynomials p(x) such that p'(0) = 0, where p'(x) is the usual first derivative of p(x) with respect to x.

Problem 9. Find all ring homomorphisms $\mathbb{Z} \to \mathbb{Z}/30\mathbb{Z}$. In each case describe the kernel and the image.

Challenge 10. Let *I* and *J* be ideals of *R*.

- (a) Prove that I + J is the smallest ideal of R containing both I and J.
- (b) Prove that IJ is an ideal contained in $I \cap J$.
- (c) Give an example where $IJ \neq I \cap J$.
- (d) Prove that if *R* is commutative and if I + J = R, then $IJ = I \cap J$.

Problem 11. Let *R* be a commutative ring with 1. Prove that the principal ideal generated by *x* in the polynomial ring R[x] is a prime ideal if and only if *R* is an integral domain. Prove that (x) is a maximal ideal if and only if *R* is a field.