MATH 332: HOMEWORK 6

Exercise 1. Construct your own *handcrafted, artisanal* semi-direct product: carefully select groups H and K from a small batch producer in the Cascades. Choose an explicit nontrivial homomorphism $\varphi : K \rightarrow \text{Aut}(H)$. Write the product on $H \rtimes K$ explicitly. If you can, find an isomorphism from $H \rtimes K$ to a more familiar group. (Since your $H \rtimes K$ is *handcrafted* and *artisanal*, do not choose an example from the book or class.)

Problem 2. Let *F* be a field and let *G* denote the group of upper triangular matrices in $GL_n(F)$. Let *U* denote matrices in *G* with 1's along the diagonal, and let *D* denote diagonal matrices in *G* (arbitrary nonzero elements of *F* along the diagonal, 0's elsewhere). Prove that

$$G \cong U \rtimes D.$$

Problem 3. In the setup of Problem 2, let n = 2. In this case, $D \cong F^{\times} \times F^{\times}$ and $U \cong F$ (where *F* refers to the additive group of *F*). Explicitly determine the homomorphism

$$\varphi: F^{\times} \times F^{\times} \to \operatorname{Aut}(F)$$

which expresses *G* as the semi-direct product $U \rtimes D$.

Problem 4. Prove that $SL_2(\mathbb{F}_3)$ is isomorphic to the semi-direct product of Z_3 and Q_8 . (It's up to you to determine if it's $Z_3 \rtimes Q_8$ or $Q_8 \rtimes Z_3$!)

Problem 5. Let F_1 and F_2 be free groups of the same finite free rank. Prove that $F_1 \cong F_2$. (*Bonus*: Do the same when F_1 and F_2 have free ranks of the same infinite cardinality.)

Problem 6. Find a presentation of A_4 with two generators (and prove that it is indeed a presentation of A_4).

Challenge 7. Define the *free abelian group* on the set *S* to be

$$\mathbb{Z}(S) = \langle S \mid [a, b] = 1 \text{ for all } a, b \in S \rangle.$$

Invent the universal property of $\mathbb{Z}(S)$ and prove that $\mathbb{Z}(S)$ satisfies it. Use the universal property to prove that $\mathbb{Z}(\{1, 2, ..., n\})$ is the *n*-fold direct product of \mathbb{Z} with itself.

Date: 16.III.15.