
MATH 332: HOMEWORK 4

Problem 1. Let 3 “ t1, 2, 3u and let S3 act on 32 “ 3 ˆ 3 via σ ¨ pi, jq “
pσpiq, σpjqq.
(a) Find the orbits of S3 on 32.
(b) For each σ P S3 find the cocycle decomposition of σ under this action.

(I.e., the action affords a permutation representation S3 Ñ S32 – S9
where the final isomorphism is given by choosing a labelling by 9 of
the elements of 32. Find the cycle decomposition of the image of each
elements of S3 in S9.)

(c) For each orbit O Ă 32 of S3 ý32, pick some a P O and find the stabi-
lizer of a in S3.

Bonus: Can you generalize any of this to Sn ýn2?

Problem 2 (Double your cosets, double your fun). Let H,K ď G be sub-
groups of a group G. For each x P G define the HK double coset of x in G to
be

HxK “ thxk | h P H, k P Ku.

(a) Let H act by left multiplication on the set of left cosets of K (i.e. H ý

G{K via left multiplication) and let O be the orbit of xK under this
action. Prove that

HxK “
ď

gKPO
gK.

(b) Prove that HxK can also be written as a union of right cosets of H .
(c) Show that the set of HK double cosets partitions G.
(d) Prove that

|HxK| “ |K| ¨ rH : H X xKx´1s “ |H| ¨ rK : K X x´1Hxs.

Problem 3. Use the left regular representation of Q8 (i.e. the permutation
representation of Q8 ýQ8 via left multiplication) to produce two elements
of S8 which generate a subgroup of S8 isomorphic to the quaternion group
Q8.

Problem 4. Find all conjugacy classes and their sizes in the following groups:
(a) D8

(b) Q8

(c) A4

(d) S3 ˆ S3.

Problem 5. Find all finite groups which have exactly two conjugacy classes.
Bonus: Exactly three conjugacy classes? Hint: The class equation.
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Problem 6. Let G be a group. If σ P AutpGq and ϕg is conjugation by g,
prove that σϕgσ´1 “ ϕσpgq. Deduce that InnpGq Ĳ AutpGq. (The group
AutpGq{ InnpGq is called the outer automorphism group of G and is denoted
OutpGq.)

Problem 7. Let G “ xxy be a cyclic group of order n. Recall that AutpGq –
pZ{nZqˆ via the assignment a P pZ{nZqˆ ÞÑ ψa, where ψapxq “ xa. For n “
2, 3, 4, 5, 6, write out explicitly whatψa does to the elements 1, x, x2, . . . , xn´1

of G.

Fix a group G. Let G- Set denote the collection of left G-sets, that is, sets
X equipped with a left G-action G ýX . A G-equivariant map of G-sets (or
just G-map for short) is a function f : X Ñ Y between G-sets such that
fpg ¨ xq “ g ¨ fpxq for all g P G, x P X . A function between G-sets is a
G-isomorphism if it is a bijective G-map. Two G-sets X , Y are G-isomorphic
if there exists a G-isomorphism X Ñ Y ; in this case, we write X –G Y . It
is easy to check that –G is an equivalence relation on G- Set (do so!).

The following two problems give us a way to think aboutG-isomorphism
classes in G- Set. By the end of Problem 9 we will see that every G-set X
can be written (up to G-isomorphism) as a disjoint union

X –G

ž

iPI

G{Hi

where tHi | i P Iu is a collection (possibly with redundancy) of subgroups
Hi ď G. (Of course, G ýG{Hi via g ¨ xHi “ pgxqHi for g, x P G.) If
you complete the optional Problem 10, you will find out which cosetG-sets
G{H are G-isomorphic to each other, thus completely settling the prob-
lem ofG-isomorphism classes inG- Set (eachG-isomorphism class is deter-
mined by a list [with multiplicity] of conjugacy classes of subgroups of G
up to permutation). In fact, if you return to Problem 10 after you’ve learned
what a category is, you will discover that you now know the structure of the
category of G-sets.

Problem 8. Prove the orbit-stabilizer theorem: Let X be a G-set and for x P X
let Gx “ tg ¨ x | g P Gu denote the orbit of x under G. Then G{Gx –G Gx
via gGx ÞÑ g ¨ x. You are welcome to proceed via the following outline:

(a) Show that if H ď G and G ýG via left multiplication, then a G-map
F : GÑ X extends to a G-map F̄ : G{H Ñ X given by F̄ pgHq “ F pgq
if and only if F phq “ F p1q for all h P H .

(b) Use (a) to show that f : G{Gx Ñ Gx given by fpgGxq “ g ¨ x is well-
defined.

(c) Show that f is bijective. (Surjective should be easy; injective requires a
slightly more substantial argument.)

Proof. (a) First suppose that F phq “ F p1q for all h P H . We must show that
F pgq “ F pg1q whenever g, g1 P gH . Since g1 P gH , g1 “ gh for some
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h P H . Thus F pg1q “ F pghq “ gF phq “ gF p1q “ F pgq, as desired. (Here
we have used the fact that F pg1g2q “ g1F pg2q for all g1, g2 P G twice.)

Now suppose that F̄ pgHq “ F pgq is well-defined. Then F pgq “
F pghq for all g P G, h P H . In particular, if g “ 1, we get F p1q “ F phq
for all h P H , as desired.

Parts (b) and (c) are still up to you!
�

Problem 9. Let G ýX be a set X with a left G-action. Show that the orbits
of elements of X partition X . Now assume X P G- Set and use the orbit-
stabilizer theorem of Problem 8 to show thatX isG-isomorphic to a disjoint
union of G-sets of the form G{H , H ď G. (Here G{H has the obvious left
G-action.)

Problem 10 (Bonus – the category of G-orbits). Let H,K ď G be subgroups
of a group G. Prove the following statements:
(a) There exists a G-map G{H Ñ G{K if and only if H is subconjugate to

K. (Here subconjugate means that H is conjugate to a subgroup of K,
i.e., there exists x P G such that x´1Hx ď K.)

(b) Every G-map G{H Ñ G{K has the form Rx : gH ÞÑ gxK where x P G
such that x´1Hx ď K.

(c) The maps Rx “ Ry if and only if x´1y P K.
(d) The G-sets G{H and G{K are G-isomorphic if and only if H and K are

conjugate in G.

We conclude with a cute and useful application of Problem 8.

Problem 11. Suppose G is a finite group and X is a finite G-set. Use the
orbit-stabilizer theorem (Problem 8) and Lagrange’s theorem to prove that
for all x P X ,

|Gx| “
|G|

|Gx|
.


