MATH 332: HOMEWORK 4

Problem 1. Let $\underline{3} = \{1, 2, 3\}$ and let S_3 act on $\underline{3}^2 = \underline{3} \times \underline{3}$ via $\sigma \cdot (i, j) = (\sigma(i), \sigma(j))$.

- (a) Find the orbits of S_3 on $\underline{3}^2$.
- (b) For each σ ∈ S₃ find the cocycle decomposition of σ under this action. (*I.e.*, the action affords a permutation representation S₃ → S_{3²} ≃ S₉ where the final isomorphism is given by choosing a labelling by 9 of the elements of 3². Find the cycle decomposition of the image of each elements of S₃ in S₉.)
- (c) For each orbit $\mathcal{O} \subset \underline{3}^2$ of $S_3 \subset \underline{3}^2$, pick some $a \in \mathcal{O}$ and find the stabilizer of a in S_3 .

Bonus: Can you generalize any of this to $S_n \subset \underline{n}^2$?

Problem 2 (Double your cosets, double your fun). Let $H, K \leq G$ be subgroups of a group G. For each $x \in G$ define the *HK* double coset of x in G to be

$$HxK = \{hxk \mid h \in H, k \in K\}.$$

(a) Let *H* act by left multiplication on the set of left cosets of *K* (*i.e. H* \subset *G*/*K* via left multiplication) and let \mathcal{O} be the orbit of *xK* under this action. Prove that

$$HxK = \bigcup_{gK \in \mathcal{O}} gK.$$

- (b) Prove that HxK can also be written as a union of right cosets of H.
- (c) Show that the set of HK double cosets partitions G.
- (d) Prove that

$$|HxK| = |K| \cdot [H : H \cap xKx^{-1}] = |H| \cdot [K : K \cap x^{-1}Hx].$$

Problem 3. Use the left regular representation of Q_8 (*i.e.* the permutation representation of $Q_8 \subset Q_8$ via left multiplication) to produce two elements of S_8 which generate a subgroup of S_8 isomorphic to the quaternion group Q_8 .

Problem 4. Find all conjugacy classes and their sizes in the following groups:

(a) D_8

- (b) Q_8
- (c) A_4
- (d) $S_3 \times S_3$.

Problem 5. Find all finite groups which have exactly two conjugacy classes. *Bonus*: Exactly three conjugacy classes? *Hint*: The class equation.

Date: 23.II.15.

MATH 332: HOMEWORK 4

Problem 6. Let *G* be a group. If $\sigma \in \operatorname{Aut}(G)$ and φ_g is conjugation by *g*, prove that $\sigma \varphi_g \sigma^{-1} = \varphi_{\sigma(g)}$. Deduce that $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$. (The group $\operatorname{Aut}(G)/\operatorname{Inn}(G)$ is called the *outer automorphism group* of *G* and is denoted $\operatorname{Out}(G)$.)

Problem 7. Let $G = \langle x \rangle$ be a cyclic group of order *n*. Recall that $\operatorname{Aut}(G) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$ via the assignment $a \in (\mathbb{Z}/n\mathbb{Z})^{\times} \mapsto \psi_a$, where $\psi_a(x) = x^a$. For n = 2, 3, 4, 5, 6, write out explicitly what ψ_a does to the elements $1, x, x^2, \ldots, x^{n-1}$ of *G*.

Fix a group *G*. Let *G*-Set denote the collection of *left G-sets*, that is, sets *X* equipped with a left *G*-action $G \subset X$. A *G*-equivariant map of *G*-sets (or just *G*-map for short) is a function $f : X \to Y$ between *G*-sets such that $f(g \cdot x) = g \cdot f(x)$ for all $g \in G, x \in X$. A function between *G*-sets is a *G*-isomorphism if it is a bijective *G*-map. Two *G*-sets *X*, *Y* are *G*-isomorphic if there exists a *G*-isomorphism $X \to Y$; in this case, we write $X \cong_G Y$. It is easy to check that \cong_G is an equivalence relation on *G*-Set (do so!).

The following two problems give us a way to think about G-isomorphism classes in G-Set. By the end of Problem 9 we will see that every G-set X can be written (up to G-isomorphism) as a disjoint union

$$X \cong_G \coprod_{i \in I} G/H_i$$

where $\{H_i \mid i \in I\}$ is a collection (possibly with redundancy) of subgroups $H_i \leq G$. (Of course, $G \subset G/H_i$ via $g \cdot xH_i = (gx)H_i$ for $g, x \in G$.) If you complete the optional Problem 10, you will find out which coset *G*-sets G/H are *G*-isomorphic to each other, thus completely settling the problem of *G*-isomorphism classes in *G*-Set (each *G*-isomorphism class is determined by a list [with multiplicity] of conjugacy classes of subgroups of *G* up to permutation). In fact, if you return to Problem 10 after you've learned what a *category* is, you will discover that you now know the structure of the category of *G*-sets.

Problem 8. Prove the *orbit-stabilizer theorem*: Let *X* be a *G*-set and for $x \in X$ let $Gx = \{g \cdot x \mid g \in G\}$ denote the orbit of *x* under *G*. Then $G/G_x \cong_G Gx$ via $gG_x \mapsto g \cdot x$. You are welcome to proceed via the following outline:

- (a) Show that if $H \leq G$ and $G \subset G$ via left multiplication, then a *G*-map $F: G \to X$ extends to a *G*-map $\overline{F}: G/H \to X$ given by $\overline{F}(gH) = F(g)$ if and only if F(h) = F(1) for all $h \in H$.
- (b) Use (a) to show that $f: G/G_x \to Gx$ given by $f(gG_x) = g \cdot x$ is well-defined.
- (c) Show that *f* is bijective. (Surjective should be easy; injective requires a slightly more substantial argument.)
- *Proof.* (a) First suppose that F(h) = F(1) for all $h \in H$. We must show that F(g) = F(g') whenever $g, g' \in gH$. Since $g' \in gH$, g' = gh for some

2

MATH 332: HOMEWORK 4

 $h \in H$. Thus F(g') = F(gh) = gF(h) = gF(1) = F(g), as desired. (Here we have used the fact that $F(g_1g_2) = g_1F(g_2)$ for all $g_1, g_2 \in G$ twice.)

Now suppose that $\overline{F}(gH) = F(g)$ is well-defined. Then F(g) = F(gh) for all $g \in G$, $h \in H$. In particular, if g = 1, we get F(1) = F(h) for all $h \in H$, as desired.

Parts (b) and (c) are still up to you!

Problem 9. Let $G \subset X$ be a set X with a left G-action. Show that the orbits of elements of X partition X. Now assume $X \in G$ -Set and use the orbit-stabilizer theorem of Problem 8 to show that X is G-isomorphic to a disjoint union of G-sets of the form G/H, $H \leq G$. (Here G/H has the obvious left G-action.)

Problem 10 (*Bonus* – the category of *G*-orbits). Let $H, K \leq G$ be subgroups of a group *G*. Prove the following statements:

- (a) There exists a *G*-map *G*/*H* → *G*/*K* if and only if *H* is subconjugate to *K*. (Here *subconjugate* means that *H* is conjugate to a subgroup of *K*, *i.e.*, there exists *x* ∈ *G* such that *x*⁻¹*Hx* ≤ *K*.)
- (b) Every *G*-map $G/H \to G/K$ has the form $R_x : gH \mapsto gxK$ where $x \in G$ such that $x^{-1}Hx \leq K$.
- (c) The maps $R_x = R_y$ if and only if $x^{-1}y \in K$.
- (d) The *G*-sets *G*/*H* and *G*/*K* are *G*-isomorphic if and only if *H* and *K* are conjugate in *G*.

We conclude with a cute and useful application of Problem 8.

Problem 11. Suppose *G* is a finite group and *X* is a finite *G*-set. Use the orbit-stabilizer theorem (Problem 8) and Lagrange's theorem to prove that for all $x \in X$,

$$|Gx| = \frac{|G|}{|G_x|}.$$