1. Show that the following rules constitute (left) group actions on the speci-
fied sets:

(a) Let F be a field and F* = F\{0} the multiplicative group of nonzero
elements of F. Then F* acts on F via g-a = ga where geF* aeF,

i: Let ae A, gy,92 € F*. Then

g1 (92 e} = g1 - (g20) = g1(ge0) /
= (g192)a  (associativity of multiplication over F)

= (g1g3) ' (F* closed under multiplication)
3

ii: 1-a = la = asince 1 is the identity in both groups. el
Therefore, it is a group operation.

(b)The additive group R acts on R? via r - (z,y) = (z + ry,r). Note
that R is a field so we have distributivity, associativity of addition, and
commutativity of addition.

i: Let r;,72 € R and let (z,y) € R2. Then

r(ra @ 9) = 71 (2 o) = (@ ray) b rigy)
=(@+(ray+nryy) =@+ (r+mny) S
=(z+(r +ry,y)=(r + r2) - (z,y)

ii: 0 is the additive identity and 0- (z,3) = (2 + 0y,9) = (z,3) |~
Therefore, it is a group operation.
(c) Included on additional page.
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2, Let ¢ : G — 54 be the permutation reputation associated with G ¢ A.
By definitionker G C A = {g¢ G: g-a=aVae A\//Also (

erp=(9eGipl) =1V /S
= 195G plo)a) = (a) Vo< A4)
={geG:g-a=aVae A}
=kerGC A



Therefore, the kernel of an action of the group G on a set A4 is the same
as the corresponding permutation representation.



4. Let G be an abelian group and X = {ge G : |g| = ow.
it |1} = 1 for all groups. Therefore, X # .

ii: Let a,b e X. Then |a| = n, < w and |b] = np < ®;. Let n =
lem(ng, ). Then there exist some kg, ky € Z7 such that kyn, = n and
kpnp = n. Thus,

(a)® = a™b"” (since G is abelian)
- ak,nnbkhn.-. oy (an;)kq (anh)kﬁ
=1k1k =

Therefore, |ab| € n < 0. Thus, X is closed under multiplication.

iii: Let e € X. Then |a| = n < o0. I claim |a”!| < n < co. Since a" =1,
a~! = a""!. Thus

(a—l)n s (an—l)n = (an)n--l =1"1l=] /

Therefore, a~! has finite order. /
Thus, the torsion subgroup, X, is a subgroup. / L«HAY ?

Matrix example from class attached at end. /
N
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5. Since all elements of Z have infinite order except for 0, TZxZ/nZ =
{(0,b)]b € Z/nZ}. Since both Z and Z/nZ are abelian their direct
product will be abelian as well. As was shown in problem 4, if G is
abelian, then 7¢ is a subgroup. o<

Z % [nZ ~ (Tzxz/mz) U {(0,0)}, the union of the set of all infinitely

ordered elements with the identity element cannot be a subgroup as

it cannot be closed under products. Suppose (z,y) is not the identity

element and has infinite order. ¢ € Z, so 3z~ € Z. (2™}, y) will also

) have infinite order because no matter how many times you(subtract x
?35$‘b}f____ rom —z, it will never cycle back to 0. However (z,y)(—z,y) = (0,y),
?“Iﬁ\"\mﬂh‘b 50 long as y € Z/nZ is not 0. (0,y) € Tzxz/nz and is not the identity
{ ¥©  element. This means that the product of two elements in the set of
Ttk infinite order elements does not necessarily have infinite order itsel[.

Q)%iié? Thus the set cannot constitute a subgroup, by definition. c_& QO ¢
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Problem 8. A group H is called finitely generated if there is a finite set A such
that H = (A).

(a) Prove that every finite group is finitely generated.

(H)is a finite ‘?et that generates H (there may be smaller ones, but that
is sufficient).

(b) Prove that Z is finitely generated.

(1) generates Z because 1" = n¥n € Z (including negative powers). —1
is also acceptable as a generating element.

(c) Prove that every finitely generated subgroup of the additive group Q is
cyclic. [If H is a finitely generated subgroup of Q, show that # < (1/k)
where £ is the product of all the denominators which appear in a set of
generators for H.]

If H is generated by {(a1,as,a3, -+ ,am) where a; = E‘fl expressed in
simplest form, then elements of H can be expressed as } 1" | n;a; and as



such H contains all fractions obtainable by summing the fractions in-
dexed. All of these fractions will be of the form Wfﬁ' that is they will

be expressible in terms of the least common denominator {(a;,ag, -+ ,an).
Thus H < (1/k) and in fact H = (7> and so H is cyclic. Jo 1,
(d) Prove that Q is not finitely generated.

Note that @ contains fractions with any integer as their denominator
in simplest form. In particular, Q contains all fractions 1/p where p is
a prime. There are an infinite number of primes, and because the LCD
cannot introduce a prime factor not included in other denominators,
Q’s minimal generating set is {1/p), which contains an infinite number
of elements. So Q is not finitely generated. _/

K



9 Letw:G— Hbea homomorphism and let E be a subgroup of H.

(2) Clearly p~1(E) j G. Therefore, we only need to show it follows the
subgroup criterion.

i: 1€ E since E is a subgroup and ©(1) = 1 since ¢ is a homomorphism.
Therefore, 1 € p~Y(E) # .

ii: Let 2,y € = (E). Then there exists a,b € E such that wlz) =a a{nd
w(y) = b. Since E is a subgroup and ¢ is a homomorphism, (c,a(y))‘{l'x=

-1
ble E\/Therefore, ¥ - -

ey ) = plz)e(y ) =ab e B



—10, Define ¢ : C* — R* by @(a + 1) = a® + #%. Let (a + bi), (c + di) € C*.
Then

/' o((a+ bi)(c + di)) = plac + adi + bei — bd) = ¢{(ac — bd) + (ad + bc)i)
= (ac — bd)? + (ad + bc)? = a%c? + b2d? +:¢?iz + bc?
= (a® + b))(c® + d?) = p(a + bip(c + di)

Therefore, ¢ is a homomorphism. The image of ¢ is (R*)*, i.e. the

positive portion of the real multiplicative group. o

The kernel of ¢ is the circle of radius one in the complex plane. More
generally, the fibers of ¢ are the subsets of the complex that that lie on

the circle of radius v/a? + B2. l./ /.a;:..-"f
¥ g —— |



