MATH 332: HOMEWORK 2

Problem 1. Show that the following rules constitute (left) group actions on the specified sets:

- (a) Let *F* be a field and $F^{\times} = F \setminus \{0\}$ the multiplicative group of nonzero elements of *F*. Then F^{\times} acts on *F* via $g \cdot a = ga$ where $g \in F^{\times}$, $a \in F$, and ga is the usual product in *F* of the two field elements *g* and *a*.
- (b) The additive group \mathbb{R} acts on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ via $r \cdot (x, y) = (x + ry, y)$.
- (c) The group $GL_2(\mathbb{R})$ of 2×2 invertible matrices with real entries acts on \mathbb{R}^2 via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}.$$

(Here we have written $(x, y) \in \mathbb{R}^2$ as a column vector.)

Bonus: What is the relationship between the action in (b) and the action in (c)?

Problem 2. Prove that the kernel of an action of the group *G* on a set *A* is the same as the kernel of the corresponding permutation representation $G \rightarrow S_A$.

Problem 3. Assume *n* is an even positive integer and show that D_{2n} acts on the set consisting of pairs of opposite vertices of a regular *n*-gon. Find the kernel of this action.

Problem 4. Let *G* be an abelian group. Prove that $\{g \in G \mid |g| < \infty\}$ is a subgroup of *G* (called the *torsion subgroup* of *G*). Give an explicit example where this set is not a subgroup when *G* is non-abelian.

Problem 5. Fix some $n \in \mathbb{Z}$ with n > 1. Find the torsion subgroup of $\mathbb{Z} \times (\mathbb{Z}/n\mathbb{Z})$. Show that the set of elements of infinite order together with the identity is *not* a subgroup of this direct product.

Problem 6. Prove that if *H* and *K* are subgroups of *G*, then so is their intersection $H \cap K$. *Bonus*: Prove that the intersection of an arbitrary nonempty collection of subgroups of *G* is again a subgroup of *G*. (Do not assume that the collection of subgroups is countable.)

Problem 7. Prove that the subgroup of $GL_2(\mathbb{F}_3)$ is the subgroup generated by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ is isomorphic to the quaternion group Q_8 .

Problem 8. A group *H* is called *finitely generated* if there is a finite set *A* such that $H = \langle A \rangle$.

Date: 9.II.15.

MATH 332: HOMEWORK 2

- (a) Prove that every finite group is finitely generated.
- (b) Prove that \mathbb{Z} is finitely generated.
- (c) Prove that every finitely generated subgroup of the additive group \mathbb{Q} is cyclic. [If *H* is a finitely generated subgroup of \mathbb{Q} , show that $H \leq \langle 1/k \rangle$ where *k* is the product of all the denominators which appear in a set of generators for *H*.]
- (d) Prove that \mathbb{Q} is not finitely generated.

Problem 9. Let $\varphi : G \to H$ be a homomorphism and let *E* be a subgroup of *H*. Prove that $\varphi^{-1}(E) \leq G$. If $E \leq H$, prove that $\varphi^{-1}(E) \leq G$. Deduce that ker $\varphi \leq G$.

Problem 10. Define $\varphi : \mathbb{C}^{\times} \to \mathbb{R}^{\times}$ by $\varphi(a + bi) = a^2 + b^2$. Prove that φ is a homomorphism and find its image. Describe the kernel and fibers of φ geometrically (as subsets of the plane).

Problem 11. Consider the additive quotient group \mathbb{Q}/\mathbb{Z} .

- (a) Show that every coset of \mathbb{Z} in \mathbb{Q} contains exactly one representative $q \in \mathbb{Q}$ in the range $0 \le q < 1$.
- (b) Show that every element of Q/Z has finite order; nevertheless, there are elements of arbitrarily large order.
- (c) Show that \mathbb{Q}/\mathbb{Z} is the torsion subgroup of \mathbb{R}/\mathbb{Z} .
- (d) Prove that Q/Z is isomorphic to the multiplicative group of roots of unity in C[×].

Problem 12. Let $SL_n(F) = \{A \in GL_n(F) \mid \det A = 1\}$. Prove that $SL_n(F) \trianglelefteq GL_n(F)$ and describe the isomorphism type of the quotient group

$$GL_n(F)/SL_n(F).$$

(You may assume that det : $GL_n(F) \to F^{\times}$ is a homomorphism.)

2