MATH 332: HOMEWORK 1

Unless otherwise specified, (G, \cdot) is a group. We will often refer to (G, \cdot) as simply *G*, and write *ab* for $a \cdot b$ when $a, b \in G$.

Problem 1. For a positive integer n, let $\mu_n(\mathbb{C})$ denote the set of complex numbers whose n-th power is 1. Prove that $(\mu_n(\mathbb{C}), \cdot)$ is a group where \cdot is the usual multiplication of complex numbers. (This group is frequently called the *group of n-th roots of unity.*) Also prove that $(\mu_n(\mathbb{C}), +)$ is not a group where + is the usual addition of complex numbers.

Problem 2. For a positive integer n, let $\mathbb{Z}_n = \{0, 1, ..., n-1\}$ and define an operation $\boxplus : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$ such that $a \boxplus b$ is the remainder of a + b after dividing by n. Show that \boxplus is well-defined and that (\mathbb{Z}_n, \boxplus) is a group. (Later, we will write $(\mathbb{Z}/n\mathbb{Z}, +)$ for (\mathbb{Z}_n, \boxplus) and call it the *group of integers mod* n.) Also prove that $(\mathbb{Z}_n, \boxtimes)$ is not a group where $a \boxtimes b$ is the remainder of $a \cdot b$ after dividing by n.

Problem 3. Prove that $(\mu_n(\mathbb{C}), \cdot)$ is isomorphic to (\mathbb{Z}_n, \boxplus) . *Bonus*: Invent other groups which are isomorphic to $\mu_n(\mathbb{C})$ and \mathbb{Z}_n .

Problem 4. Let *x* be an element of *G*. Suppose |x| = n for some positive integer *n*. Prove that $x^{-1} = x^{n-1}$.

Problem 5. For $x, y \in G$, prove that xy = yx if and only if $y^{-1}xy = x$ if and only if $x^{-1}y^{-1}xy = 1$.

Problem 6. Compute the order of each of the elements of each of the following groups: D_6 , D_8 , and D_{10} .

Problem 7. Let *T* be the group of rigid motions (*aka* rotations) of a regular tetrahedron. Show that |T| = 12. *Bonus*: Let *C*, *O*, *I*, and *D* be the groups of rigid motions of the regular cube, octahedron, icosahedron, and dodecahedron. Find |C|, |O|, |I|, and |D|.

Problem 8. Suppose $\sigma, \tau \in S_{15}$ have cycle decompositions

$$\sigma = (1 \ 13 \ 5 \ 10)(3 \ 15 \ 8)(4 \ 14 \ 11 \ 7 \ 12 \ 9)$$

$$\tau = (1 \ 14)(2 \ 9 \ 15 \ 13 \ 4)(3 \ 10)(5 \ 12 \ 7)(8 \ 11).$$

Find the cycle decompositions of σ^2 , $\sigma\tau$, $\tau\sigma$, and $\tau^2\sigma$.

Problem 9. Let $\mathbb{N} = \{0, 1, 2, ...\}$ denote the set of natural numbers. Prove that $S_{\mathbb{N}}$ is an infinite group. *Bonus*: Can you say anything more precise about the cardinality of $S_{\mathbb{N}}$?

Date: 2.II.15.

Problem 10. If *A*, *B*, and *C* are groups, prove that

$$A \times B \cong B \times A$$
 and $A \times (B \times C) \cong (A \times B) \times C$.

Problem 11. Let *G* be any group. Prove that the map $G \to G$ taking $g \mapsto g^{-1}$ is a homomorphism if and only if *G* is abelian. What conditions guarantee that $g \mapsto g^{-1}$ is an automorphism?

Problem 12. Prove that D_8 and Q_8 are not isomorphic.

Problem 13. A *subgroup* of a group *G* is a subset $H \subseteq G$ such that

(1) $1 \in H$,

(2) if $a, b \in H$, then $ab \in H$, and

(3) if $a \in H$, then $a^{-1} \in H$.

Prove that *H* is a group under the operation \cdot restricted to *H*.

Problem 14. Let *G* and *H* be groups and let $\varphi : G \to H$ be a homomorphism. Define the *kernel* of φ to be

$$\ker \varphi = \{ g \in G \mid \varphi(g) = 1 \}.$$

Prove that ker φ is a subgroup of *G*. Prove that φ is injective if and only if ker $\varphi = \{1\}$.

Problem 15. Recall that Q_8 is the quaternion group of order 8 with generators *i*, *j*. Prove that the map φ from Q_8 to $GL_2(\mathbb{C})$ defined on generators by

$$\varphi(i) = \begin{pmatrix} \sqrt{-1} & 0\\ 0 & -\sqrt{-1} \end{pmatrix}$$
 and $\varphi(j) = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}$

extends to a homomorphism. Prove that φ is in fact a monomorphism.