MATH 311: COMPLEX ANALYSIS HOMEWORK DUE FRIDAY WEEK 1

Make sure to read the "Homework" portion of the syllabus before writing up your solutions!

Problem 1. Draw pictures of the sets of points $z \in \mathbb{C}$ satisfying the following relations:

- (a) $|z-z_1|=|z-z_2|$ for some fixed $z_1\neq z_2\in\mathbb{C}$;
- (b) $1/z = \overline{z}$;
- (c) $|Im(z)| \le 1$.

Problem 2. Find all solutions in \mathbb{C} to the equation $z^4 = -1$. Is the expression $\sqrt[4]{-1}$ unambiguous?

Problem 3. Let

$$\mathfrak{C} = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$

with the usual matrix addition and multiplication operations. Show that the function

$$f: \mathbb{C} \longrightarrow \mathfrak{C}$$

$$a + bi \longmapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

is an isomorphism of fields, where $a, b \in \mathbb{R}$. (You must check that f is a bijection and that it preserves both field operations.)

Problem 4. Show that it is impossible to define a total ordering on \mathbb{C} . In other words, there is no relation < on \mathbb{C} such that

- (i) for any two $z, w \in \mathbb{C}$, precisely one of the following is true: z < w, w < z, z = w;
- (ii) for all $z_1, z_2, z_3 \in \mathbb{C}$, if $z_1 < z_2$, then $z_1 + z_3 < z_2 + z_3$; and
- (iii) for all $z_1, z_2, z_3 \in \mathbb{C}$ with $0 < z_3$, if $z_1 < z_2$, then $z_1 z_3 < z_2 z_3$.

[*Hint*: First consider what would happen if 0 < i.]