
Integration in Rn

Following Colley, we have learned how to integrate functions f : Rn → R for n = 2, 3. There is,
of course, nothing particularly special about these two natural numbers, except perhaps that it is
easier to visualize and interpret double and triple integrals. In these notes, we will extend Colley’s
definitions to arbitrary n ∈ Z+ = {1, 2, 3, . . .} and then comment briefly on appropriate extensions
of the standard theorems. We conclude by computing the volume of the n-dimensional simplex
of side r.

1. DEFINITIONS

Closed boxes (aka rectangles) in R2 take the form [a1, b1]× [a2, b2] where ai < bi are real numbers
for i = 1, 2. Closed boxes in R3 are of the form [a1, b1]× [a2, b2]× [a3, b3], again for ai < bi. In Rn, a
closed box is the cartesian product of n closed intervals:

B = [a1, b1]× [a2, b2]× · · · × [an, bn]

where ai < bi for i = 1, . . . , n. This is the same thing as the set of n-tuples (x1, . . . , xn) ∈ Rn such
that ai ≤ xi ≤ bi for each i = 1, . . . , n, and clearly generalizes the n = 2, 3 notions of closed box.

In order to integrate over such boxes, we need to partition them. A partition of B of order m
consists of n collections of partition points that break up B into a union of mn subboxes. That is, for
i = 1, . . . , n we consider collections {xi,j}mj=0 where

ai = xi,0 < xi,1 < . . . < xi,j−1 < xi,j < . . . < xi,m = bi.

Additionally, for i = 1, . . . , n, j = 1, . . . ,m we define

∆xi,j = xi,j − xi,j−1.

Let J = (j1, j2, . . . , jn) be a list of n indices ji with 1 ≤ ji ≤ m. (Note that this is the same
thing as J being an element of the n-fold cartesian product {1, 2, . . . ,m}n.) The subboxes of this
partition take the form

BJ = [x1,j1 , x1,j1−1]× [x2,j2 , x2,j2−1]× · · · × [xn,jn , xn,jn−1].

We define the volume of BJ to be

∆VJ = ∆x1,j1 · · ·∆xn,jn ,

the product of the widths of the n subintervals defining BJ .
Now let cJ be any point in the subbox BJ . For a function f : B → R, the quantity

S =
∑
J

f(cJ)∆VJ ,

where the indices J run through {1, 2, . . . ,m}n, is called a Riemann sum of f on B corresponding
to the partition.

This leads us to our primary definition, that of the integral (or multiple integral) of f on B; it is
denoted ∫

· · ·
∫
B
f dV or

∫
B
f dV

and is defined to be the limit of the Riemann sums S above in which all of the ∆xi,j approach 0,
provided this limit exists. (The first notation is meant to evoke n-many integral signs stacked next
to each other. Since this is quite cumbersome, we will often use a single integral sign, remembering
that the “multiplicity” of the integral is completely specified by the domain of f .) When

∫
B f dV

exists, we say that f is integrable on B.
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2. PROPERTIES

We are interested in describing some basic hypotheses under which a function f : B ⊆ Rn → R
is integrable. The following is the basic result, presented without proof.

Theorem 1. If f is bounded on B and the set of discontinuities of f has volume 0, then f is integrable on
B.

In order to understand this theorem, we must know what “volume 0” means for a subset of Rn.
The idea is the same as in R2 and R3: we can cover the set S of discontinuities with boxes which
approach 0 in volume. But what is the volume of an n-dimensional box? We’ve already defined
this above (cf. ∆VJ ) as the product of the lengths of the intervals defining the box.

There is also an n-dimensional version of Fubini’s theorem.

Theorem 2. Let f be bounded on

B = [a1, b1]× [a2, b2]× · · · × [an, bn]

and assume the set S of discontinuities of f has zero volume. If every line parallel to the coordinate axes of
Rn meets S in finitely many points, then∫

B
f dV =

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, x2, . . . , xn) dxn · · · dx2 dx1.

If σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a bijection, then it is also the case that∫
B
f dV =

∫ bσ(1)

aσ(1)

∫ bσ(2)

aσ(2)

· · ·
∫ bσ(n)

aσ(n)

f(x1, x2, . . . , xn) dxσ(n) . . . dxσ(2) dxσ(1).

Note that the final sentence in the theorem statement is just an elaborate (and precise!) way of
saying that we can perform the iterated integral in any order. The bijection σ can be thought of
as a “reordering” or permutation of {1, 2, . . . , n}. There are n! of these so, in some sense, Fubini’s
theorem in Rn is actually n! different theorems.

3. INTEGRATING OVER GENERAL REGIONS

We would like to integrate over more general regions than just boxes in Rn. Given W ⊆ Rn and
f : W → R, we define fext to be the function on Rn given by

fext(x) =

{
f(x) if x ∈W,
0 if x /∈W.

If there is a box B such that W ⊆ B (i.e. if W is bounded), then we define∫
W
f dV =

∫
B
fext dV,

provided the integral on the right exists. (It is readily checked that this definition does not depend
on the choice of box B containing W .)

If f and g are integrable functions W → R, then
∫
W satisfies the usual linearity properties∫

W
(f + g) dV =

∫
W
f dV +

∫
W
g dV

and ∫
W
cf dV = c

∫
W
f dV
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for any constant c ∈ R. Multiple integration is also monotonic (i.e., respects inequalities), and∣∣∣∣∫
W
f dV

∣∣∣∣ ≤ ∫
W
|f | dV.

Finally, we are left with the task of actually integrating functions over elementary regions. To
say that W ⊆ Rn is elementary is to say that there is some reordering y1, . . . , yn of the coordinates
x1, . . . , xn such that W consists of points (x1, . . . , xn) such that

a ≤ y1 ≤ b,

ϕ`1(y1) ≤ y2 ≤ ϕh1(y1),

ϕ`2(y1, y2) ≤ y3 ≤ ϕh2(y1, y2),

...

ϕ`n−1(y1, . . . , yn−1) ≤ yn ≤ ϕhn−1(y1, . . . , yn−1)

where a ≤ b are constants and ϕ`i and ϕhi are functions of the indicated variables.

4. THE n-DIMENSIONAL SIMPLEX

For a positive integer n and nonnegative real number r, we define the n-dimensional simplex of
side r to be

Sn(r) = {(x1, . . . , xn) ∈ Rn | 0 ≤ x1, . . . , 0 ≤ xn, x1 + · · ·+ xn ≤ r}.
Take the time to draw pictures of S2(r) and S3(r). You should see that S2(r) is a solid right
isosceles triangle in the first quadrant with side lengths r, r, and

√
2r. Meanwhile, S3(r) is a

solid tetrahedron in the first octant.
From the definition, it is clear that 0 ≤ xn ≤ r for all points (x1, . . . , xn) ∈ Sn(r). If we fix xn

between 0 and r and consider the set

Sn(r)|xn = {(x1, . . . , xn−1) ∈ Rn−1 | (x1, . . . , xn−1, xn) ∈ Sn(r)},

then we see that
Sn(r)|xn = Sn−1(r − xn).

This follows because

x1 + · · ·+ xn ≤ r ⇐⇒ x1 + · · ·+ xn−1 ≤ r − xn.

We now compute the volume of Sn(r) by first letting xn vary from 0 to r. This gives us

vol(Sn(r)) =

∫
Sn(r)

1 dV =

∫ r

0

(∫
Sn−1(r−xn)

1 dV

)
dxn =

∫ r

0
vol(Sn−1(r − xn)) dxn

because the “inner iterated integral” computes the volume of Sn−1(r − xn) by the above para-
graph’s observations. This sets us up perfectly to compute vol(Sn(r)) inductively in n.

First observe that for any r ≥ 0, S1(r) = [0, r] has volume (i.e., length) r. Thus

vol(S2(r)) =

∫ r

0
vol(S1(r − x2)) dx2 =

∫ r

0
(r − x2) dx2 = rx2 −

x22
2

∣∣∣∣r
0

=
r2

2
.

Based on this (and perhaps a few more low-dimensional calculations), we guess that

vol(Sn(r)) =
rn

n!
.
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We have already verified the base case (when n = 1), so suppose that for any r ≥ 0 and some
n > 1 we have vol(Sn−1(r)) = rn−1/(n− 1)!. Then

vol(Sn(r)) =

∫ r

0
vol(Sn−1(r − xn)) dxn =

∫ r

0

(r − xn)n−1

(n− 1)!
dxn.

Let u = r − xn so that du = −dxn. Then we get

vol(Sn(r)) =
−1

(n− 1)!

∫ 0

r
un−1 du =

−1

(n− 1)!

un

n

∣∣∣∣0
r

=
rn

n!
,

as desired, completing our proof by induction.
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