Day 25 Learning Goals · Diagonalizability ·Eigenspaces · Diagonalization algorithm

Recall that f: V - V has eigenvector v with eigenvalue & when v = 0 and f(v) = 2v. Defn For dim V=n, a linear transformation f: V→V is diagonalizable when 3 ordered basis $\alpha = \langle v_1, \dots, v_n \rangle$ if $V_{s,t}$. $A_{\alpha}^{\alpha}(f) = diag(\lambda_1, \dots, \lambda_n)$ For some hiEF. A matrix A Mathematic (F) is diagonalizable uhan $f_A: F^n \longrightarrow F^n$ is diagonalizable. Prop A linear transformation is diagonalizable iff it has a basis of eigenverture. PF We have Az(f) = diag(li,..., ln) $= f(v_i) = \lambda_i v_i , \quad i = 1, ..., n.$

E.g. $R_{\Theta} = \begin{pmatrix} c_{\sigma} \Theta & -sin \Theta \\ sin \Theta & c_{\sigma} \Theta \end{pmatrix}$ is not diagonalizable $F_{Mat_{2r_2}}(R)$

unluss $\Theta = n\pi$, $n \in \mathbb{Z}$. Recall that x= {v1, ..., vn } a basis of eigenvectors for A E Mathien (F) and P= (v, v2 ···· vn) implier D=P'AP is diagonal column vectors ul rigen-alues on diagonal. Defn Matrices A, B & Matnen (F) are conjugate when 3 PEMaturn (F) invertible with A=P'BP THE Conjugacy is an equivalence rulation! Rink A, B are conjugate iff J f:F" -> F" linear and ordered bases &, p of Fⁿ r.t. $A = A_{\alpha}(f), B = A_{\beta}(F)$ Recall that $\chi_A(x) = dat(A - xI_n)$ is the characteristic polynomial of A and that her is an eigenvalue FA iff $\chi_A(\lambda) = 0$. $\begin{array}{c} E \cdot g - H \\ H \\ A = \begin{pmatrix} 2 & -7 & 3 \\ 0 & -5 & 5 \\ 0 & 0 & 2 \end{pmatrix} \\ \end{array}$ then upper triangular! $\chi_{4}(x) = d_{1} + \begin{pmatrix} 2-x & -7 & 3 \\ 0 & -5-x & 3 \\ 0 & 0 & 2-x \end{pmatrix} = -(x-2)^{2}(x+5)$

Thus A has eigenvalues 2 (with multiplicity 2) and 5. Defn Let I be an eigenvalue of a matrix A. The eigenspace of A for λ is $E_{\lambda}(A) := \{ v \in V \mid Av = \lambda v \} = ker (A - \lambda I_n).$ To (attempt to) diagonalize A, we must find bases for all of its eigenspaces. E.g. (d'd) To compute Er: $A-2I_{3} = \begin{pmatrix} 2 & -7 & 3 \\ 0 & -5 & 3 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ $= \begin{pmatrix} 0 & -7 & 3 \\ 0 & -7 & 3 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & -3/7 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\implies \overline{E}_{2} = \ker \left(A - 2\overline{I}_{3} \right) = \left\{ \left(\times, \frac{3}{2} \neq 2, \overline{z} \right) \left(\times, \overline{z} \in \mathbb{R} \right\} \right\}$ with busis ((1,0,0), (0, 7, 1)) or $\{(1,0,0), (0,3,7)\}$. To compute E.s:

 $\begin{array}{c} A-5I_{3} = \begin{pmatrix} 7 & -7 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 7 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 7 \end{pmatrix}$ => E = er (A-5I,) = {(y, y, 0) | y e k} with bags ((1,1,0)), We will see later that eigenvectors in distinct eigenspaces are linearly ind, so {(1,0,0], (0,3,7), (1,1,0)} is a basis of eigenvectors for A. Hence diag (2,2,-5) = P'AP $frr P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 7 & 0 \end{pmatrix}$ E.g. Lut's modify A slightly : $A' = \begin{pmatrix} 2 & i & 3 \\ 0 & -5 & 3 \\ 0 & 0 & 2 \end{pmatrix}$ This has the same char poly and same eigenvalues as A. A brows for E_(A') is <(-7,1,0) . (Similar Aupr ar before.)

TPS Find a basis for $E_2(A')$. Should get $A-2I_3 \longrightarrow \begin{pmatrix} 0 & | & 0 \\ 0 & 0 & | \\ 0 & 0 & 0 \end{pmatrix}$ \implies $E_2(A')$ her ban's $\langle (1,0,0) \rangle$. This there are at most two lin and eigenvectors for A'! We conclude that A' doe not admit a bors of sigenvectors => A' is not diagonalizable. Diagonalization Algorithm (1) Find ergenvalues of A as roots of XA. (2) For wagenvalue λ of A, compute a basis of $E_{\lambda}(A)$. (3) The matrix A is diagonalizable : ff the total number of bacis vartors found in (2) is n. If so, thus vectors form an evigenbasis for A and if P is the matrix with these vectors as columns, than $D = P^{-1}AP$ is diagonal w/ sigenvalues on its diagonal.

Note We still need to show that rectors from different eigenspaces are lin ind. Next time!

Defn If λ is an aigenvalue of A, its (algebraic) multiplicity is the # of factors of (x-2) in XA(x). The geometric multiplicity of λ is dim $E_{\lambda}(A)$. We always have I geom mult's < I alg mult's and A is diagonalizable iff both of three same are n iff Igeommull's = n.