MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 14

Problem 1. A *rhombus* is a parallelogram with all sides of equal length. Using the standard inner product in \mathbb{R}^2 , prove that a parallelogram is a rhombus if and only if its diagonals meet perpendicularly. Hint: take two arbitrary vectors $x, y \in \mathbb{R}^2$ and consider the parallelogram determined by x and y:

(Another hint: avoid coordinates. I.e., you should use abstract properties of the inner product and definitions of length and angle rather than formulas involving x_1, x_2, y_1, y_2 .)

Problem 2. Let *V* be an *n*-dimensional vector space over $F = \mathbb{R}$ or \mathbb{C} , and let \langle , \rangle be an inner product on *V*. Let $\alpha = \{v_1, \ldots, v_n\}$ be an ordered basis for *V* (not necessarily orthogonal). Let *A* be the $n \times n$ matrix given by

$$A_{ij} = \langle v_i, v_j \rangle.$$

For $x \in V$, let $[x]_{\alpha} \in F^n$ denote the coordinate vector for x with respect to the basis α . So if $x = \sum_{i=1}^{n} a_i v_i$, then $[x]_{\alpha} = (a_1, \ldots, a_n)$. (We have denoted this $\operatorname{Rep}_{\alpha}(x)$ in the past.) As usual, we will think of this vector in F^n as an $n \times 1$ matrix.

(a) Prove that for all $x, y \in V$,

$$\langle x, y \rangle = ([x]_{\alpha})^{\top} A\left(\overline{[y]_{\alpha}}\right).$$

(Recall that for a matrix C, we define \overline{C} by $\overline{C}_{ij} = \overline{C}_{ij}$, and then we define the conjugate transpose by $C^* = \overline{C^{\top}}$. *Hint*: compute both sides using sum notation. On the right-hand side, you will be computing the 1, 1-entry of a 1×1 matrix.)

- (b) Prove that the matrix A satisfies $A = A^*$.
- (c) If the basis α is orthonormal, what is the matrix *A*?
- (d) (Extra credit) Let \mathcal{D} be another ordered basis for V, and let C be the associated $n \times n$ matrix. How are A and C related (with proof)?

Problem 3. Let *V* be the vector space of all continuous functions $[0,1] \rightarrow \mathbb{R}$ with inner product $\langle f,g \rangle = \int_0^1 f(t)g(t) dt$. Let *W* be the subspace spanned by $\{t,\sqrt{t}\}$. (Warning: to get this problem right, you will need to be very careful with your calculations and double-check your solutions.

- (a) Apply Gram-Schmidt to $\{t, \sqrt{t}\}$ to compute an orthonormal basis $\{u_1, u_2\}$ for *W*. (Hint: the coefficient of *t* in u_2 should be $-6\sqrt{2}$.)
- (b) Find the closest function in W to $f(t) = t^2$. Express your solution in two forms: (i) as a linear combination of u_1 and u_2 , and (ii) as a linear combination of t and \sqrt{t} .
- (c) Graph *f* and its projection onto *W* (which you just calculated).