MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 11

Problem 1. For each of the following matrices $A \in M_{n \times n}(F)$

- (i) Determine all eigenvalues of A.
- (ii) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ .
- (iii) If possible, find a basis for F^n consisting of eigenvectors of A.
- (iv) If successful in finding such a basis, determine an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

(a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$
 for $F = \mathbb{R}$.
(b) $A = \begin{pmatrix} 0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5 \end{pmatrix}$ for $F = \mathbb{R}$.
(c) $A = \begin{pmatrix} 7 & -5 \\ 10 & -7 \end{pmatrix}$ for $F = \mathbb{R}$.
(d) $A = \begin{pmatrix} 7 & -5 \\ 10 & -7 \end{pmatrix}$ for $F = \mathbb{C}$.

(e)
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1 \end{pmatrix}$$
 for $F = \mathbb{R}$

Problem 2. Let $V = \mathbb{R}[x]_{\leq 3}$, the vector space of polynomials of degree at most 3 with real coefficients. Let *L* denote the linear endomorphism

$$L: V \longrightarrow V$$

$$p(x) \longmapsto xp'(x) + p'(x).$$

(You do not need to prove that L is linear, but you should know how to.) Find the eigenvalues of L and determine if V has a basis of eigenvectors of L. If L has such a basis, provide one (written as a set of polynomials), and if not, explain why not.

Problem 3. Let $f: V \to V$ be a linear transformation. For a positive integer m, we define f^m inductively as $f \circ f^{m-1}$. Prove that if λ is an eigenvalue for f, then λ^m is an eigenvalue for f^m .

Problem 4. Define $T: \operatorname{Mat}_{n \times n}(\mathbb{R}) \to \operatorname{Mat}_{n \times n}(\mathbb{R})$ by $T(A) = A^{\top}$ (the transpose of A).

- (a) Show that the only eigenvalues of *T* are 1 and -1. (*Hint:* Problem 3 might help.)
- (b) For n = 2, describe the eigenvectors corresponding to each eigenvalue.
- (c) Find an ordered basis α for $Mat_{2\times 2}(\mathbb{R})$ such that the matrix that represents T with respect to α is diagonal.
- (d) Repeat part (b) for an arbitrary n > 2.
- (e) Repeat part (c) for $Mat_{n \times n}(\mathbb{R})$.