MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 5

Problem 1. Find the coordinates of each given vector v with respect to the ordered list of linearly independent vectors $B = \langle \beta_1, \ldots, \beta_n \rangle$. Show your work.

(a)
$$v = (11, -6), B = \langle (1, 2), (-2, 3) \rangle.$$

(b) $v = (11, -6), B = \langle (1, 0), (0, 1) \rangle.$
(c) $v = x^2 + 7x - 5, B = \langle 1, (x - 1), (x - 1)^2 \rangle.$
(d) $v = x^2 + 7x - 5, B = \langle 1, x, x^2, x^3 \rangle.$ (Note: $x^3 \in B$).
(e)
 $v = \begin{pmatrix} 3 & 7 \\ 8 & 11 \end{pmatrix}, B = \left\langle \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ -1 & 3 \end{pmatrix} \right\rangle.$

Problem 2. Let A be an $m \times n$ matrix with i, j-th entry A_{ij} . The *transpose* of A, denoted A^T , is the $n \times m$ matrix with i, j-th entry A_{ji} : the *i*-th row of A^T is the *i*-th column of A. Thus, for example,

$$\begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}^T = \begin{pmatrix} a & c & e \\ b & d & f \end{pmatrix}.$$

A matrix A is symmetric if $A^T = A$. A matrix A is skew-symmetric if $A^T = -A$. A 3×3 skew-symmetric matrix has the form:

$$\left(egin{array}{ccc} 0&a&b\\ -a&0&c\\ -b&-c&0 \end{array}
ight).$$

Let *W* be the set of 3×3 skew-symmetric matrices over a field *F*.

- (a) Prove that *W* is a subspace of the vector space of all 3×3 matrices over *F*.
- (b) Give a basis for *W*.
- (c) What is $\dim(W)$?

Problem 3. Define the following matrix over the real numbers:

$$M = \begin{pmatrix} -14 & 56 & 40 & 92 \\ 8 & -32 & -23 & -53 \\ 6 & -24 & -17 & -39 \\ -1 & 4 & 3 & 7 \end{pmatrix}.$$

- (a) What is the reduced echelon form for *M*? (You do not need to show your work for this. Thinking a bit about your choices will save work.)
- (b) Compute (i) a basis for the row space of *M* and (ii) a basis for the column space of *M* using the algorithm presented in class on Monday of Week 4. (Make sure you follow the algorithm precisely. The solution is then unique.)
- Problem 4. (a) Prove that there exists a linear transformation $f \colon \mathbb{R}^2 \to \mathbb{R}^3$ such that f(1,1) = (1,0,2) and f(2,3) = (1,-1,4). What is f(8,11)?
- (b) Is there a linear transformation $f \colon \mathbb{R}^3 \to \mathbb{R}^2$ such that f(1,2,1) = (2,3), f(3,1,4) = (6,2) and f(7,-1,10) = (10,1)? Explain your reasoning.

Problem 5. Recall that $\operatorname{Hom}(V, W)$ denotes the vector space of linear transformations $V \to W$ under pointwise addition and scalar multiplication.¹ When $W = F = F^1$, the vector space $V^* :=$ $\operatorname{Hom}(V, F)$ is the called the *dual* of V. Suppose that V has ordered basis $\langle v_1, \ldots, v_n \rangle$. Prove that V^* has basis $\langle v_1^*, \ldots, v_n^* \rangle$ where v_i^* satisfies

$$v_i^*(v_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

(Your solution should include a justification of why v_i^* is a well-defined element of V^* .)

¹*I.e.*, (f+g)(v) = f(v) + g(v) and $(\lambda f)(v) = \lambda f(v)$ for all $f, g \in \operatorname{Hom}(V, W)$ and $\lambda \in F$.