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the same way. /] .
. e . BI:‘:;' and the Jones Polynomial.
i s(sc;t:;m I( ls(};all demonstrate that the normalized bracket
K = (—AY~wIKHK) is a version of i
the original J i
B et : gi ones polynomial V)
e theory of braids. The Jones polynomial has been subject.e:l( (:)
o

! The rest proceeds in
Thus the model is an
of calculation live inside it

pY invariant, but regular isotopy

use another pa.ramet.erization of the Jones

It is sometimes convenient to
extraordinary generalizati . .
generalizations since it was first introduced in 1984 [JO2]. The
. se

Remark.

omial. Here wé write

enera.hza.tlo w1 erge t € O on. I{ ay w1 ly
s na n en E mn he cours fd.tacus&l. n ere we st th the sto

. 7 (J’- L V...-" igi
of th; original Jones polynomial and its relation with the bracket
ones construct invari .
_Z.: >4 | " " tl'.) ed the invariant Vi(t) by a route involving braid groups and
mann algebras. Although there is much more to say about von Netr:
mann

.I
Note that the loop varisble 5 = (Vi+ 7;) for this model. The expansion is given
el T .
plgebras, it is sufficient here to consider a sequence of algebras A, (n =2
n (n=23,...)

by the formulas:
. ~ with multiplicative
V. f =-—' (- '-"'V generators €1,€z,... ,Cn— i .
/N \/- ?. A 1) c? 0 1 and relations:
2) eicixz16i = T
V>§ =il - tV? .A, 3) ciej =ejei [i—jl>2
(7 is & scalar, rac
commuting with all the other elements.} For our purposes w 1
e can let

onding state expansion we have o
- be the free additi
n ditive algebra on these generators viewed as a module over th
e

e (e )

(i, 1/E,~t, /1) and el
ach state, the sign is (-1)°
annihilation splices in
me insight inta $3€

In the corresp

ring C[r, 77! =

5 m:'l ;:' 1 ((: denotes the complex numbers.). The scalar 7 is often taken to b
; pum! en
ﬁﬂl tht e.‘B T:l? l:lt for o PU-I'POBBB iB anothe: n-lgebraic V&l’iable CDmmu‘:i -

= [J‘o.}] 8 ; gebra arose in the theory of classification of von Neu -
dgcbmr , and it can itself be construed as a von Neumann algeb -
ebra.

duct of the vertex weights

in the oriented state. For e
f creation-

In this von Neumann atn tow

1 algebra context it is nat

o : : : ural to stud; i

a_ fm associated with an inclusion of algebras N ¢ M Witl:r]:I ce_-rtN nl\t; : Mor

0 ..-. 2 = M . . . ,

_4___' . Mse—br(n 1,€1) where ¢) : M) — My is projection to M, and (I:J ey}

aa al generated by M, with ¢; adjoined. Thus we have the :tj l

tes pattern

where (K |o) is the pro
is the number of loops

where 7 is the parity

This version of the Jones
ations in the state summation.

=1 (Vg = 1) imply t

of the number ©
the state. polynomial may lead s0

vexing problem of cancell

For a knot K, does Vi hat K is ambief

Myc M Cc M=
2 = (M, .
( ! cl,’ cl'Ml_"Mth C'f=e1.

Unknot Problem.

isotopic to the unknot?
Phthm CANn be iterated to form a tower

MoCMiCM,CM;C...C My CMpy: C

O e : M, : ch wer
;i—'M._g,e?—e.-a.ndM,-+,—(M~ i}. Jones constru
e o iy €i). Jones constructs such a to
w1 v that e;eix18; = 7e; and e;e; = e;¢; for i-jl>1
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zed notion of index for these

! = [M: Mo a generali

Here he found that 7~
defined a trace tr: My

algebras. Furthermore, he
that it satisfied the

— C (complex numbers) such

Markov Property: tr(wei) =T tr(w)
for w in the algebra generated by Mo, €1,-- -

to the complex numbers is said

3 €i—1

A function from an algebra A to be a trace (tr)

if it satisfies the identity
tr({ab) = tr(ba)

are examples of trace functions.
ful for studying the index [M1 : Mo} for

all not discuss ven Neumann

for a, b, € A. Thus ordinary matrix traces
The tower construction is very 1use
special types of von Neumann algebras. While 1 sh

algebras in this short course, We shall construct a mo
acket polynomial. Thus the combinatorial structure

of the tower construction will become apparent from the discussion that follows.
Now to return to the story of the Jones polynomia.l: Jones was struck by the

analogy between the relations for the algebra An and the gene

braid group Ba- View Figure 11 for a comparison of these

directly connected with the br

the n-strand Artin

sets of relations

gi0i+10i = i1 0iTi+1

eieixii = TG

oidj = 0505 fi—il>1

ee; = ejcis i ~3il>1

’

€1, 62y~ y€n—-1

Jones Algebra Artin Braid Group

Figure 11

Jones constructed 2 representation pu : B, — An of the Artin Braid 8

to the algebra Aa. The representation has the form

pnloi) = a&i +b

del of such a tower that is'

rating relations for,
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with a and b .
can obtai chosen appropriately. Since A, has a trace tr: A Clt, -

ain a mappi .  Aa = Clt,t7
this mapping is t:f:l:: e B .—’ C[t,t"?}. Upon appropriate normaﬁzl:ne
- eated links, Whi nes polynomial Vi(t). It is an ambient isotopy i o

8. i . invari
B e o the l:h::e polyn:nua.l Vi(t) was originally defined only for :j:i;m
rems of Markov (see [B2 .
due t ]) and Alexand
(due to the Markov property of the Jones trace) it is well ander [ALEX1] that
knots and links. is well-defined for arbitrary
These results of
o A|:,:; ::a-rl:ovTand Alexander are worth remarking upon here. First
er’s Theorem: Each link i . Firs
= gy, L : in three-dimensi
is ambient isotopic to a link in the form of a dos::ebdll.l;ensmna] space
raid.

A Ilrald 18 !Ol uled b tak ngn Ol“ts ina lml.e a“.d at-tﬂc}“n Stl a-n.ds to

'these poiﬂts 8O h i
a parnuel planes lntemct the strmdﬂ in n Polﬂts It i
t t . 18 usua-l]y

assumed that th i :
that i e braid begins and terminates in the same arr
20 that it has the diagrammatic form angement of points

g g

-h'e arrow of tim:
- e as moving up the Each
ibe page perpendicularly i . S plane (spatial plane) int
\ ly in a horizontal line. Thus successive slices gi }in e.l'Sects
slices give & picture

M of the braid. Two braids i
> fhh "‘ltlivalence)b-;nzzﬂ ln.B.. are said to be equivalent (and we write
if there is an ambient isotopy from b to b that k
eeps
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the space between the

fixed and does not move sny strands outside
b and b’ have identical

the end-points
braids.

top and bottom planes of the

input and output points.)
For example, we 8e€ the following equivalence

X P

(ltis assumed that

) \ 1|

arallel descending gtrands is called the identity braid

if need be. Bn, the collection of n-

valence classes of n-strand b

The braid congisting in n P
in B, and is denoted by 1 or 1q
up to equivalence, (i.e. the set of equi
- the Artin Braid Group- Two brai
strands of b to the input gtrands of &' a8 indicat

bb' \I L bb'

ds b, V' are multipli
ed below:

b
A

written as 8 product of the generators o1y
o7, These elementary braids Ji snd i
in the row of in

i-th and (i + 1)-th points

Every braid can be
and their inverses o7 LI - I

obtained by interchanging only the

strand braids,
raids) is & group
ed by joining the output

Thus #9

Kl=1 A=l {44

a1
o
2 LE L] o-n ]

- X
-1

IX]-|
a2k
ay :
These generat
ors provide & conveni
venient way to catalog various weavi
ving patterns.

For example y

=gt =
or o1 o207 0y

A 380° twist i
wist in the strands has the appearan
ce

T1T01030102

(0'10'2)3.

The braid

i group B, is co

in n mpletely descri

relations are as follows: bed by these generators and relation
s.

d','a"."l =1, =1

a;0;, e =1...,n-1
i9i410i = 04100441, i=1 ’

nei= i T
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t relation is 8 version of the type 11 move,

)
/ ot =1

gecond relation is a type Til move:

YL U
\
! l

070102

Note that the firs

while the

010201
Note that since g,020; = 020102 is stalb

(0'10‘20‘:)—1 = (020102) s whence 070701

There are, however, & few other cases of the typ

I

-1 — -1
1 o201 = 030107

this is algebraically equivalen!

However,
and o on the right). In fact,

both sides by o1 on the left,
as follows: o o O
arlo201 =N (020102)92
= “f‘(":ﬂzﬂ'x)t’;l
= (01'101)(0’2"102")
= 030107
ze this form of the equivalen
ive and negative cr
es and type [11 moves whe!

1 emphasi
with a mixture of posit

bination of type 11 mov

sign.

ed in the group B,, we also know that

-1 = g7lor 07"
e 111 move. For example:

{ to the relation 020192 = 010

s that the type 1L mo'
acoomplished via B o
re all the crossing®

ce because it show
ossings can be
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Note Lhat thele /8 hOIllOIIlDI phlsm ) Of the blﬂ.ld gIOl.l.p BI‘I Dnto the pe:-
mutﬂ.tlon gloup Sn on the set {1'2'--- '".}. Ihe map mw: Bn s d Sn 18 defined
by tak]ng the pem“tatlon Of top tO bottom rows Df lentB ﬂ-ﬁ’o‘ded by the blmd.

Thus
1 2 3

L1 %/ = (1 2 3
/N 312
here th T2 3
where the notation on the right indi
g tlndlcﬂteﬂa. ermut O
with p(1) = 3, p(2) = 1 permutation p : {1,2,3} — {1,2
=1, P(s) =2, pr = W(b) for . g ' ,3}
o . a braid b N
3 th:m endpoint of the braid strand that begins ::. p . t:le-n p(i) = j where j
tting ¢ : {1,2 n} — { ot &
glpera gy 1,2’_“ n} den
k+1: (i) =i if i i} denote the transposit
w(i) =1 i i # k, k+1, 7e(k) = k+1, e(k+1) = k. We have tha:n(d)k o
' *{o3) =i,

1= 1' per T - p p
= 'ﬂ 1 In t-etllls Of tllesc trm OSItlons, S" has the Iesentatlo"

nz(’ T T = TiTit1Ti = Ti4+1TiT,
S T Ina00 - 2 q
1Tn—1 | U ll iTi417i i+1Ti i+1)-

' The permutati i .
h= ation group is the quotient of the braid group By, obtai
quares of all the generators equal to the identity. m cbteined by rertne

Alexander’s Theorem.
As we mentioned
joned a few paragraphs ago, Alexander proved [ALEX1] that
any

u rt or link could b i v
e put in the form of a closed braid ( ia ambient isotop )
y -

i _' d an nxis:
r‘-- - EB =k B
: oo - closed braid b

! 0 oi th!aa"dlmensloﬂal space A% & Umo f hal ‘lees eadl g
p
f
n O 1] maln 'ohe
“qme that b lﬂtElSCCt eﬂd’ hﬂlf'plme mn the same nu“'lbet Ot polnts (the

Btis in either a clockwi
B " o\:zs:; or counterclockwise orientation. Alexander's method
¢ho . . .
cae braid axis. Then follow along the knot or link
]
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throwing the strand over the axis whenever it began to circulate incorrectly.

Eventually, you have the link in braid form.

Figure 12 illustrates this process for a particular choice of axis. Note that I
it is clear that this process will not always produce the most efficient braid rep-
a given knot or link. In the example of Figure 12 we would have
we had taken the axis at a different location - as shown

resentation for
fared considerably better if

below.

o *
R _begins to go Wrong

s all that is required to obtain this braid.

One throw over the new axis i
question: How many different ways can & Bis

These examples raise the
be represented as a closed braid?
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ﬂ:!'!l P
—7 ’?\\..._-—'

Alexander’s Theorem

Figure 12



W

94

e §1I] e Wh 8 to modl btmds 80 t-hnt tlhE‘r ClDSu.'leS are m!lb
8 ]

lsOtOplc lmkﬂ. Fllst thele 18 the Ma!kﬂ\' move. Suppose ﬁ 18
(henr'e L “ntd n o1 [ TR a‘l—l md t‘he)t lnHBIBQB). Ihen t'he three b:md.ﬂ ﬂ,
1 ) b '
ﬁo md ﬁa nll ha-ue melent lsOtOplC cloBuIBS. Fbt example,
n n

% =oy7'0107'02 € Ba
"
A

€ B4

E ; ister move.
Thus Boz! is obtained from B by a type 1 Reidemeis
n

i b
A somewhat more diabolical way to make a br

i -1, When we
braid ¢ in Ba and take the conjugate braid gfg
choose any

pa———

. :d ¢ and its inverse @
gfg™! to form gPg~" the braid g

ids
the theory of knots and the theory of bray

aid with the same closure 18

-1 can cancel each
ental theorem that rels

95

Markov Theorem 7.1. Let 8, € B, and #,, € B, be two braids in the braid
groups B, and By, respectively. Then the links (closures of the braids g, ')
L = B and L' = f7_ are ambient isotopic if and only if 8!, can be obtained from
B by a series of

1) equivalences in & given braid group.

2) conjugation in a given braid group. (That is, replace a braid by some
conjugate of that braid.)

3) Markov moves: (A Markov move replaces 8 € B, by fo! € B,,, or the
inverse of this operation - replacing fo! € B.y; by # € B, if § has no
occurrence of oy.)

‘For a proof of the Markov theorem the reader may wish to consult [B2].
The reader may enjoy pondering the question: How can Alexander's technique
 for converting links to braids be done in an algorithm that a computer can perform?
(See [V].)

With the Markov theorem, we are in possession of the information needed
to use the presentations of the braid groups B, to extract topological
information about knots and links. In particular, it is now possible to explain
how the Jones polynomial works in relation to braids. For suppose that we are
g ven & commutative ring R (polynomials or Laurent polynomials for example),

nd functions J,, : B, — R from the n-strand braid group to the ring R, defined
or each n = 2,3,4,... Then the Markov theorem assures us that the family of

in..la' {Jn} can be used to construct link invariants if the following conditions

Jas1{ban) = ot Jo(b)
Jnsa(bo7") = @' Ja(B).
' " that for the closed braid ¥ = bo, the result of the Markov move b s ¥’

FS80mm & type I move on b. Furthermore, bo, corresponds to a type I move
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e o

of positive type, while bo! corresponds to & type 1 move of negative type. It is

for this reason that 1 have chosen the conventions for o and a~) as above. Note

The Bracket for Braids.

anlng dlﬂcumd W ow 100, & y
Eeneralltles about bl‘mdﬂ, e can n ] k d.lr ct;l t h
A t -4

also that, orienting & braid downwards, BS in bracket pol al
polynomi .
on closed braids. In the process, the structure of the J
e Jones

}/\’,,,

has positive crossings corresponding to o8 with positive exponents.
With these remarks in mind, let's define the writhe of a braid, w(b), to be
&

polynomial and its associated
Te i i
i presentations of the braid groups will naturally
In order to begin this discussi -
g cussion, let's define { } :
. N ' ) }: By — Z[A, A7) vi
{5) _.-k ( }, the evnlu?.txon of the bracket on the closed braid L I ]rm“'“l
Markov trace formalism, I am letting J,, : B, — Z[4,A47}] = R " t; B
. = R via J,(b) = {b).

In fact, given what we kn
ow about the brack i
et from section 37, it is obvious that

| its exponent sum. That is, we let w(b) = Y at in any braid word
=1
{7.} is & Markov trace, with a = A3

ay 83 Sk
U.‘l O'i' ...0'.-.

Now consider the states of a braid. Th O
I f id. ti i
o : ; t N at 18, C nsider the states determined

(K 2= ({4 )

(-1 Ve al B Y a1 )

(i) = AfLa) + 47H3)

representing b. From our previous discussion of the writhe, it is clear that w(b) =
w(b) where 7 is the oriented link obtained by closing the braid b (with downward-
oriented strands). Here w(b) is the writhe of the oriented fink 5.

Definition 7.2. Let {Ju:Bn— R) be given with properties 1., 2., 3. as listed
i above. Call {Ja} ® Markov trace on {Ba). For any link L, let L ~ b, b€ Ba
via Alexander’s theorem. Define J(L) € R via the formula

J(L)= o~ ® I, ().

Call J(L) the link invariant for the Markov trace {Ja}.

Proposition 7.3- Let J be the link invariant corresponding to the Markov trao

{Ja}- Then J is an invariant of ambient isotopy for oriented links. That is, if B v ielement writien in braid
: : raid input-output form, b .
, but with & cup-U ca
p-N

L ~ L' {~ denotes ambient isotopy) then HL)y=J (L) H

Proof. Suppose, by Alexander’s theorem, that L ~Fand L' ~ ¥ where be B, mhination () at the i-th and (i + 1)-th strands:

and ' € B, are specific braids. Since L and L' are ambient isotopic, m

7 and ¥ are also ambient jsotopic. Hence I can be obtained from b by 2 gequences ' ' % l ‘ l Y]

Markov moves of the type 1.,2.,3. Each such move leaves the function ar it U N (for 4-strands)
2

e for &, is obt ;
_ A2 obtai . .
. ofsa::e: ll:y cho-nsmg splice direction for each crossing of b
: “_:hl:t: e =" e written as the closure of an (input-out ,u“‘tnE
;- (See section 3° for a discussion of bracket st l:. ;
states.

(b € Bn) invariant since the exponent sum is invariant under conjugatiot:
moves, and it is used here to cancel the effect of the type 3- Markov move: S8

completes the proof.
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Example. b= o}.

| For example, let L[ = bbethe link
Then

| U(E) = (A+ AT YA+ AT,)
L b= 0‘1"6261-‘0'2 I =8 v 470
l .. (8) = (b)) = A%(1a) +2(Uh) + A~(UT)
. " > () =4

Then the state s of L shown below corresponds to the product UiUs.
\(
iH = () =1y b L=F
3w -
N {Uh) &

U
s ?‘) TiUs =
\& n

In fact it is clear that we can usé the following formalism: Write

#

(L) = A’(-A2 _A—2)+2+A-2(_Az —A")
=_A4_1+2_1_A_‘
(Ly=—-A*-A"1

sm=At AU, ot = A~ 4+ AU;

U(b) where U(b) is & sum of products of the
ubstitutions for each o;. Each product

Given a brai
U;'s, obtained by performing the above §
llection of loops. Thus if U is such a product, then

of U;'s, when closed gives a €0
sin) U -1 and § =

(U) = = §II where Ul = #{of loop

d wotd b, Wﬁte b =
This is in i i cul ack
) accord with our previous calculation of the bracket for the simple

d Of two components.
i, Th n - - . .
ps f heﬂ umtlom 18 tha m Ca]culatlns h bl‘ t for

if Ll(b) is giaen o
U(b) (b‘S)Ul ! H Wi odule
..S. he U;'s a3 cup- inat} i
|. CAp combinations. This a]gebm A“ ill be reguded as a m dul

es all the terms in the product, and {bls) is the product of A's anl et the ring Z[A, A™'} with § )
) = —A? — A~? ¢ Z[A,A?] the designated loop

where § index
-product U,, then

A-Vs multiplying each U
At are the multiplicati .
- = b U iplicative rel . .
{b) = (Ll(b)) = E. ( fs} ( o) e relations in A,? Consider the pictures in Fi

h .‘illuatra.te the relations:

(b’ = (bl )6“'“.
z.: A UiUlé:lUt = U;
[4 { vz =)
UU; - U, ili-il>1)

This is the braid-analog of the gtate expansion for the bracket.




U1U3U1 = U;

Y oY U? = v,
2N

In fact, these are precisely the relations for The Temperley-Lieb algebra. Note
that the Temperley-Lieb algebra and the Jones algebra are closely related. In fact,
if we define e; = §71U;, then e} = ¢; and e;¢;41¢; = Te; where 7 = §~2. Thus, by
considering the state expansion of the bracket polynomial for braids, we recover
the formal structure of the original Jones polynomial.

It is convenient to view .4, in a more fundamental way: Let D, denote the
collection of all (topological) equivalence classes of diagrams obtained by connect-
ing pairs of points in two parallel rows of n points. The arcs connecting these
points must satisfy the following conditions:

1} Al arcs are drawn in the space between the two rows of points.

2) No two ares cross one anather.

3) Two elements a,b € D, are said to be equivalent if they are topologically
equivalent via a planar isotopy through elements of D,. (That is, if there is a
continuous family of embeddings of arcs - giving elements C; € D, (0 <t < 1)
with Cy = @, C) = b and C; the identity map on the subset of endpoints for
eacht, 0 <1<1).

Call D, the diagram monoid on 2n points.

Example. For n =3, D; has the following elements:

[ A

1; Uy r s
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Elements of the diagram monoid D, are multiplied like braids - by attaching
the output row of a to the input row of b - forming ab. Multiplying in this way,
closed loops may appear in ab. Write ab = §*c where ¢ € D,,, and k is the number
of closed loops in the product.

For example, in D, \*

QL
rs= 0_6 ﬂ = 8U;.

Proposition 7.4. The elementa 1,Uy,Us,... ,Un—y generate Dy, If an element
z € D, is equivalent to two products, P and Q, of the elements {U/;}, then Q can
be obtained from P by a series of applications of the relations [.A].

See [LK8| for the proof of this proposition. The point of this proposition is
that it lays bare the underlying combinatorial structure of the Temperley-Lieb
algebra. And, for computational purposes, the multiplication table for D, can be
obtained easily with a computer program.

We can now define a mapping

p:Bn— An
by the formulas:

ploi)=A+ A~y
o) = A7 + AU,

We have seen that for a braid b, (8) = 3"(B|s)(TU,} where p(b) = T(bls)U, is the
explicit form of p() obtained by deﬁniJ;g plzy) = p(z)p(y) on pro'ducts. (s runs
through all the different products in this expansion.) Here {U.) counts one less
than the number of loops in T,.

Define tr : A, — Z[A,A7} by tx(U) = (U) for U € D,,. Extend tr linearly
to A,. This mapping - by loop counts - is a realization of Jones’ trace on the von
Neumann algebra A,. We then have the formula: (b} = tr{p(3)).

This formalism explains directly how the bracket is related to the construction
of the Jones polynomial via a trace on a representation of the braid group to the
Temperley-Lieb algebra.



We need to check certain things, and some comments are in order. First of
all, the trace on the von Neumann algebra A, was not originally defined diagram-
matically. It was, defined in {JO7] via normal forms for elements of the Jones
algebra A,. Remarkably, this version of the trace matches the dingrammatic loop
count. In the next section, we’ll see how this trace can be construed as a modified
matrix trace in a representation of the Temperley-Lieb algebra.

Proposition 7.5. p: B, — A,, as defined above, is a representation of the Artin
Braid group.

Proof. It is necessary to verify that p(o;)p{o;!) = 1, p(0i0i410:) = p(0i410:i0:41)
and that p(o;a;) = p(e;jo;) when |i — j| > 1. We shall do these in the order - first,
third, second.

Pirst.

ploi)p(oT!) = (A + AT U)A™! + AUY)
=14(A"?+ AW, + U?
=1+ (A7 4+ AU, + 8U;
=1+ (A7 + AYU; + (A7 = AU,
=1

Third. Given that |i — j] > 1:
ploios) = p(ai)p(a})
=(A+A7TUNA+ A7)
=(A+A7W)(A+ A7), [UU; = U it i = 5] > 1]

= p(ojo;i).
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Second.

poiinne) = (A+ A7) A+ AWV (A + A7)

= (A + Uip1 + Ui + AU Ui )(A + A7)

= A+ AUigr + AU + A”WiUsa + A7VU? + AU + A7 UinalU;
+ AUy Ui

= A+ AUigr + (A716 4 240U, + A" (Uil + UialUi) + A7U;

= A 4+ AUia + (A7 (A - A7) 424 + A~
+ AN UUig1 + Uia U)

= A + A(Ui1 + U:) + A UilUigs + UpaU)).

Since this expression is symmetric in i and ¢ + 1, we conclude that
p(0i0i4100) = p(dis10i0i41).

This completes the proof that p: B, —+ A, isa representation of the Artin
Braid Group. //




