
Joyal’s proof of Cayley’s formula

There are 16 trees with vertex set 4 = {1, 2, 3, 4}:
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An isomorphism between two graphs G = (V,E) and G′ = (V ′, E′) is a bijection of their vertices
that induces a bijection of their edges. In detail, this means there is a bijection f : V → V ′ such
that for each {u, v} ∈ E, we have {f(u), f(v)} ∈ E′ and the resulting function

E 7→ E′

{u, v} 7→ {f(u), f(v)}

is bijective. If we say G ∼ G′ whenever there is an isomorphism between a pair of graphs G
and G′, it is easy to check that ∼ is an equivalence relation. An unlabeled graph is an equivalence
class under this relation. For instance, there are only two equivalence classes of trees on 4 vertices.
These appear below:

Suppose you did not have the list of 16 trees with vertex set 4. How could you go about finding
them? One way to proceed is to first create the list of unlabeled graphs on 4 vertices. Since 4 is
a small number, it is easy to see there are only two: the star graph and the path graph pictured
above. The task then is to find the different ways of labeling the vertices of these two graphs with
the numbers 1, 2, 3, 4. For the star graph, there is one vertex with degree 3 (i.e., with 3 adjacent
edges). The other vertices are “symmetric” in the sense that permuting labels on these vertices
does not change the (labeled) graph. For instance, the two graphs below are the same:
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We know the above two graphs are equal (not just isomorphic) since they have the same vertices
and the same edges. Thus, there are 4 labeled star graphs with vertex set 4, each arising from a
choice of a central vertex. Now consider the path graph. At first, you might think there are 4! = 24
ways of labeling the vertices of the unlabeled path graph—one for each permutation of 4. How-
ever, note that the following two graphs are the same:

1 2 3 4 4 3 2 1

Why? Again: these two graphs have the same set of vertices and the same set of edges.

PROBLEM 1. Arguing from unlabeled trees as above, determine the number of (labeled) trees
on five vertices.

THEOREM 2 (Cayley’s formula). The number of trees on n vertices is nn−2.

We will give Joyal’s proof of this theorem. Let Tn denote the number of trees on n vertices.
Then Cayley’s formula can be restated as

n2Tn = nn.

To prove Cayley’s formula, Joyal creates a bijection between two sets, one of size n2Tn, and the
other of size nn. The latter sets is easy to describe: it is nn, the set of all functions of {1, 2, . . . , n}
to itself. (Recall that nn has nn elements since for each of the n elements in its domain, there are n
choices for an assigned value in the codomain.) The former set—the one with n2Tn elements—
consists of what Joyal called vertebrates.

A vertebrate on n vertices is a tree T with vertex set n and a choice of an ordered pair (t, h)
consisting of vertices t and h of T (where t = h is allowed). The vertex t is called the tail of the
vertebrate, and h is the head. The number of vertebrates on n vertices is n2Tn since there are Tn

choices for T , and for each each of these, there are n possibilities for each of t and h. Let Vn denote
the set of all vertebrates on n vertices. To prove the validity of Cayley’s formula, it suffices to
create a bijection:

J : Vn → nn.

Why the word vertebrate? Given the tree T with tail t and head h, there is a unique path from t to h,
which we imagine to be the spine of some creature. The edges not on this path are the creature’s
appendages. When drawing a vertebrate, we will highlight its spine, which will be used in the
construction of our bijection. See Figure 1.
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FIGURE 1. Vertebrate on 9 vertices with tail vertex 8 and head vertex 4.

Bijection. We first describe the mapping J : Vn → nn by example using the vertebrate T of Figure 1
with tail t = 8 and head h = 4. To find the corresponding mapping f : 9→ 9, start with the values
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of f along the spine. The spine vertices, in their tail-to-head order along the spine, are 8, 6, 2, 4.
List these numbers in two rows. The top row is the natural ordering of these numbers, and the
bottom is their “spine-ordering”:

(∗) i 2 4 6 8
f(i) 8 6 2 4

.

Then start to define f be sending each number in the top row to its corresponding number below
it, as shown in the table.

It remains to assign values to the vertices along the appendages. To do this, direct the edges
incident on appendage vertices so that they point towards the spine, as shown in Figure 2. If the
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FIGURE 2. Directing addendage edges towards the spine.

integer i is an appendage vertex, let f(i) be vertex adjacent to i on the path leading to the spine.
Thus, for instance, f(7) = 9 and f(9) = 4. Filling in these values defines f on the rest of its domain:

i 1 2 3 4 5 6 7 8 9
f(i) 6 8 8 6 4 2 9 4 4

.

FIGURE 3. Function corresponding to the vertebrate in Figure 1. Spinal vertices are
in blue.

We now let J(T, (t, h)) = f ∈ 9 9.

Definition of the mapping J : Vn → nn

Let T , (t, h) be a vertebrate. Our task is to define f := J(T, (t, h)) ∈ nn.

(1) First define f for the vertices along the spine. Say the spinal vertices are v1, . . . , vk, in order
along the spine from tail to head. Let a1 < · · · < ak be the permutation of these spinal ver-
tices into their natural ordering as integers. Then define f(ai) = vi for i = 1, . . . , k. Thus, f
permutes the spinal vertices.

(2) Next, direct all edges incident on appendage (non-spinal) vertices so that they point towards
the spine. If i is an appendage vertex, define f(i) = j if j is the vertex adjacent to i along the
directed path from i to the spine.
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i 1 2 3 4 5 6 7 8 9
f(i) 3 5 8 7 5 1 4 1 2

.

FIGURE 4. A function f : 9→ 9.

6

1

3 8

5 2 9

4 7

FIGURE 5. Directed graph associated with the function in Figure 4.

The inverse mapping. We now describe the inverse of the mapping Vn → nn, starting with an
example. Consider the function given by the table in Figure 4. We are hunting for a corresponding
vertebrate. To begin, associate a directed graph to f with vertex set 9 and with edges (i, f(i))
for i ∈ 9. This graph is pictured in Figure 5. Each of the components of the resulting graph has a
unique cycle.1

The cycles are 1→ 3→ 8→ 1, and 5→ 5, and 4→ 7→ 4. Consider the function restricted to
the vertices in these cycles:

i 1 3 4 5 7 8
f(i) 3 8 7 5 4 1

.

The list of vertices in the bottom row of the table defines the spine, from tail to head, of the verte-
brate we are seeking:

t
3 8 7 5 4

h
1

Finally, for each appendage vertex i, we attach the edge {i, f(i)}. These are undirected versions of
the edges appearing in Figure 5:

t
3 8 7 5 4

h
1

69
2

PROBLEM 3. Apply the mapping J : Vn → nn to the above vertebrate to see that you recover
the original function f .

1It is generally true that each component of the directed graph associated to a function f : n → n will have a unique
cycle. To see this, consider a component H of the graph. Each vertex of H has a single out-going edge, and thus, the
number of vertices and edges of H are equal. One characterization of a tree is a connected graph with one fewer edge
than vertex. Thus, H is connected but not a tree. So H must have a cycle. Removing one edge from the cycle leaves a
tree, and it is a general fact that adding an edge to a tree produces a unique cycle.
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The inverse mapping J−1 : nn → Vn

Let f : n→ n. Our task is to find a vertebrate T, (t, h) such that J(T, (t, h)) = f .

(1) Create a directed graph G with vertex set n and directed edges (i, f(i)) for i ∈ n.
(2) Let i1 < i2 < · · · < ik (with the natural ordering as integers) be the vertices appearing in cycles

in G. Define the spine of the vertebrate T, (t, h) we are constructing to be the path graph with
vertices f(i1), . . . , f(ik). Thus, t := f(i1) and h := f(ik).

(3) Finally, for each vertex i of G that is not in a cycle, add the (undirected) edge {i, f(i)} to T .

Example. Here is a final example illustrating the special case where t = h. Start with the
vertebrate T, (t, h) in Figure 6
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FIGURE 6. Vertebrate in for which t = h.

To define the corresponding function f := J(T, (t, h)), we first define f along the spine as in
the table (∗). This tells us that f(3) = 3. We then direct the appendage edges (in this case, all of
the edges) towards the spine and read off the rest of the function:

i 1 2 3 4 5
f(i) 3 3 3 3 2

.

To reverse the process, first draw the directed graph G corresponding to f as in Figure 7.
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FIGURE 7. Graph for the function corresponding to the vertebrate in Figure 6.

There is only one connected component to G, and it has a single cycle: a loop at 3. This means that
the corresponding vertebrate has a spine with t = h = 3. Adding the appendage edges {i, f(i)}
for i 6= 3 then recovers the original vertebrate.
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PROBLEM 4. Choose a vertebrate with vertex set n for some n, and then determine its corre-
sponding function f under our bijection. Next choose some function f : n→ n, and determine its
corresponding vertebrate.
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