MATH 113: DISCRETE STRUCTURES FINAL EXAM REVIEW

GP = group problems available on Dave Perkinson's Math 113 site, http://people.reed.edu/~davidp/113/.

Also see the slide presentations on Dave's site for additional excellent study material.

- » Basic counting
 - Additive and multiplicative counting principles
 - Factorials, binomial coefficients, Pascal's triangle
 - Statement of the binomial theorem
 - Problems: HW3W, HW4M, HW4F, HW5M, HW6W Problem 1, HW7F Problem 1, GP3F Problems 2 and 3, GP4W, Exam 1 Q1, Q2, Q3, Exam 2 Q1
- » Equivalence relations
 - Problems: HW3F, Exam 1 Q4, Q5
- » Induction proofs
 - Problems: HW5W Problem 1, GPF4 Problem 1
- » Inclusion/exclusion
 - Problems: HW5F Problem 2, Exam 2 Q3
- » Pigeon-hole principle
 - *Problems:* HW6M Problem 1, textbook pp. 114–15, GP5W Problem 3, Exam 2 Q5
- » Fibonacci numbers (definition)
 - Problems: HW7M Problem 1, GP6M Problem 1, Exam 2 Q2
- » Graph theory
 - $-\sum_{v\in V} \deg_G(v) = 2|E|$
 - * Problems: HW8M Problem 1, GP7M Problems 1 and 2, Exam 2 Q4
 - Paths, cycles, theorem about existence of closed Eulerian walks
 - * Problems: HW8W Problem 1, GP7W Problem 1, Exam 2 Q4
 - Trees
 - * Definition: connected acyclic graph
 - * Trees with n vertices have n 1 edges
 - * Cayley's formula: the number of labeled trees with n vertices is n^{n-2}

 Joyal's proof of Cayley's formula: https://people.reed.edu/ ~davidp/113/handouts/joyal.pdf

- · *Problems:* HW10M Problem 1, GP9M
- » Catalan numbers
 - Catalan number C_n counts unlabelled full binary trees with n + 1 leaves
 - Catalan recurrence: $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$
 - * Problems: GP7F Problems 1 and 2
 - Closed formula: $C_n = \frac{1}{n+1} {2n \choose n}$

- Structures counted by Catalan numbers: bijections between between Dyck paths, full binary trees, balanced parenthesizations, and full parethesizations of letters (https://people.reed.edu/~davidp/113/handouts/catalan_ bijections.pdf)
 - * Problems: HW9W Problem 1
- » Probability theory
 - Basic objects: sample space, events, probability distribution
 - * Problems: HW11W, GP9W Problems 1 and 2
 - Uniform distribution on a finite sample space
 - Independent events
 - * Problems: GP9F Problems 1 and 2
 - Conditional probability P(A|B)
 - Bayes' Law: P(B|A) = P(A|B)P(B)/P(A)
 - Law of Total Probability: $P(A) = \sum_{i} P(A|B_i)P(B_i)$ for $\{B_i\}$ a partition
 - Random variables
 - Expected value E(X)
 - * Problems: HW11M
 - Linearity of expected value: E(cX + Y) = cE(X) + E(Y)
 - * Problems: GP10W Problem 1
 - Special types of random variables: Bernoulli, binomial, indicator
 - * Problems: HW10M Problem 2, HW10W Problem 1, GP10M, GP10F
- » Number theory
 - Divisibility
 - * Problems: HW11F Problem 1 (using the fundamental theorem of arithmetic), HW12M Problem 1, GP11M
 - Prime numbers
 - Fundamental theorem of arithmetic (unique prime factorization)
 - Infinitude of primes
 - Prime number theorem: $\pi(n) \sim n/\log n$
 - Fermat's little theorem: $p|a^p a$
 - Greatest common divisors and Euclidean algorithm
 - * Problems: HW12F Problems 1 and 3
 - Congruences
 - * Problems: GP12W Problems 1-4, GP12F
 - Multiplicative inverses modulo *n*
 - Euler ϕ function
 - * $\phi(n) = |\{r \in \mathbb{N} \mid r < n \text{ and } gcd(r, n) = 1\}|$
 - * Euler's formula: $\phi(n) = n(1 1/p_1)(1 1/p_2) \dots (1 1/p_k)$ for *n* with prime factors p_1, \dots, p_k
 - * Euler's theorem: if gcd(a, n) = 1, then $a^{\phi(n)} = 1 \mod n$ · *Problems:* GP13M Problem 1
 - Sunzi's theorem
 - * Problems: HW13F Problem 2, GP13W Problems 1-4

Links to compiled lists of homework and group problems:

- » https://people.reed.edu/~davidp/113/handouts/all-hw.pdf
- » https://people.reed.edu/~davidp/113/handouts/all-groups.pdf
- » https://people.reed.edu/~davidp/113/handouts/all-group-sols.pdf