MATH 113: DISCRETE STRUCTURES HOMEWORK DUE WEDNESDAY WEEK 6

Question 1. How many permutations of an *n*-element set have exactly one fixed point? Take an integer *k* such that $1 \le k \le n$; how many permutations of an *n* element set have exactly *k* fixed points?

Question 2. Recall that we have defined n_i to be the number of derangements of \underline{n} (the number of permutations of $\{1, \ldots, n\}$ with no fixed points). Consider the following inductive "proof" that $n_i = (n-1)!$ for all $n \ge 2$:

For n = 2 the formula holds, so take some $n \ge 2$ and assume that $n_j = (n - 1)!$. Let π be a permutation of $\{1, 2, ..., n\}$ with no fixed points. We want to extend it to a permutation π' of $\{1, 2, ..., n + 1\}$ with no fixed points. We choose a number $i \in \{1, 2, ..., n\}$, and we define $\pi'(n + 1) = \pi(i)$, $\pi'(i) = n + 1$, and $\pi'(j) = \pi(j)$ for $j \ne i, n + 1$. This defines a permutation of $\{1, 2, ..., n + 1\}$, and it's easy to check that it has no fixed points. For each of the $n_j = (n - 1)!$ possible choices of π , the index *i* can be chosen in *n* ways; therefore, $(n + 1)_j = (n - 1)! \cdot n = n!$.

This "proof" gives a procedure for producing *n* derangements of $\underline{n+1}$ from each derangement of \underline{n} . Apply this procedure to all of the derangements of $\underline{3} := \overline{\{1,2,3\}}$, and use your result to reveal the error. For ease of notation, you can represent a permutation π by its list of values $\pi(1)\pi(2)\ldots\pi(n)$. For instance, the permutation of $\underline{2}$ defined by $\pi(1) = 2$ and $\pi(2) = 1$ could be denoted by 21.