MATH 113: DISCRETE STRUCTURES HOMEWORK DUE FRIDAY WEEK 2

For full credit: your solutions must adhere to the templates and advice given on pages 2–3. Please read carefully.

Problem 1. Let $f : A \to B$ be a function. Show that a function $g : B \to A$ such that $f \circ g = id_B$ exists if and only if f is surjective.

Problem 2. Suppose that $f : A \to B$ and $g : B \to C$ are composable functions.

(a) If $g \circ f$ is surjective, does g have to be surjective? Does f have to be surjective?

(b) If $g \circ f$ is injective, does g have to be injective? Does f have to be injective?

PROOF-WRITING TEMPLATES/ADVICE

The exact form the statement of a theorem takes almost always sets up expectations in a mathematician's mind for the form of its proof. Not meeting that expectation often leads to confusion (unless safeguards are otherwise taken by the proof-writer). Below, I will try to make some of those forms explicit by providing templates, and you should try to adhere to them in your own writing.

In the following, the symbols P and Q denote mathematical statements that may be true or false.

I. Implications.

 Theorem 3. If P, then Q.

 Proof. Suppose P. Then blah, blah, blah, ...

It follows that *Q*.

Theorem 4. P if and only if Q.

<i>Proof.</i> (\Rightarrow) Suppose <i>P</i> . Then blah, blah, blah,
It follows that Q .
(\Leftarrow) Now suppose Q . Then blah, blah, blah,
It follows that <i>P</i> .

II. Proving injectivity/surjectivity/bijectivity.

Theorem 5. The function $f : A \rightarrow B$ is injective.

Proof. Let $x, y \in A$, and suppose that f(x) = f(y). Then blah, blah, blah. It follows that x = y. Hence, f is injective.

Theorem 6. The function $f : A \rightarrow B$ is surjective.

Proof. Let $b \in B$. Then blah, blah. Thus, there exists $a \in A$ such that f(a) = b. Hence, f is surjective.

Theorem 7. The function $f : A \rightarrow B$ is bijective.

Proof. (Alternative 1.) We first show that f is injective. [Follow the template above to show injectivity.] Next, we show f is surjective. [Follow the template above toe show surjectivity.]

Proof. (Alternative 2) Define $g: B \to A$ as follows: blah, blah, blah. Note that $g \circ f = id_A$ since blah, blah, blah. Next, note that $f \circ g = id_B$ since blah, blah, blah. \Box

III. Use of examples.

Theorem 8. Show that P does not imply Q.

Proof. [Give the simplest and most concrete example of a case in which P is true and Q is not. If you were, instead, trying to show P implies Q, then an example might be useful but would not suffice as a proof. However, in trying to show P does not imply Q, it is the opposite: you are obliged to provide an example, and a general explanation might be useful but does not suffice.]

IV. Proof by contrapositive or contradiction.

Instead of proving P implies Q directly, it is sometime tempting to prove the logically equivalent statement: "if not Q, then not P". Similarly, it is often tempting to start off by assuming that Pis true and Q is not true and then showing that a contradiction arises. Advice: *whenever* you take that route with a proof, when you are done, go back and see if you can prove P implies Q directly. More often than not, the direct proof will be cleaner and the indirect one, involving negation, is convoluted in comparison.

As an example, consider a theorem of the form: "if the function f is defined by blah, then f is injective". To prove this you could suppose that f(x) = f(y) and $x \neq y$, i.e., f is not injective, and then argue that you get a contradiction. This would be reasonable since this is the way we store the notion of injectivity in our brains: two different elements in the domain are not sent by the function to the same element in its codomain. However, it is almost always the case that a direct proof, as given in the template, above, is more clear: assume f(x) = f(y) and show that this means x = y. (In fact, this latter proof exactly expresses the definition of injectivity given in our course notes.)