## MATH 113: DISCRETE STRUCTURES HOMEWORK DUE MONDAY WEEK 10

*Problem* 1. The following is practice on understanding Joyal's proof of Cayley's formula. Recall that Cayley's formula says that the number of trees on n vertices is  $T_n := n^{n-2}$ . Joyal proves this by giving a combinatorial argument that  $n^2T_n = n^n$ . The left-hand side counts "vertebrates", which consist of a tree on n-vertices and a choices of special tail and head vertices. The right-hand side counts functions  $\underline{n} \to \underline{n}$ . For the following problems use Joyal's bijection between these two set of objects, as described in our handout and in class.

(a) Find the function associated with the following vertebrate:



(b) Find the vertebrate associated with the following function:

| i    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |   |
|------|---|---|---|---|---|---|---|---|---|
| f(i) | 3 | 2 | 4 | 1 | 7 | 1 | 2 | 6 | • |

(c) Describe the vertebrates arising from constant functions  $\underline{n} \rightarrow \underline{n}$  (do not forget to specify the tail and head). (A *constant function* is a function whose image consists of a single element.)

*Problem* 2. Recall that a standard 52-card deck of cards consists of four suits: clubs, spades, hearts, and diamonds (where clubs and spades are black, and hearts and diamonds are red). Each suit has 13 denominations: ace, two, three,..., ten, jack, queen, and king. You are dealt five cards from a shuffled standard 52-card deck. What are the probabilities of receiving each of the following? (Provide explanations.)

- (a) A flush (five cards of the same suit, no restriction on the denominations).
- (b) A full house (three cards of one denomination and two of another; for example, three kings and two sevens is a full house).