Math 113, Monday Week 8

March 16, 2020



Dyck Paths



A Dyck path of length 2n is a monotonic (east/north=right/up)
lattice path from (0,0) to (n, n) that stays below the diagonal.
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Figure 1. The 14 Dyck paths of length 2n where n = 4.



Theorem
The number of Dyck paths of length 2n is the Catalan

number C, = n-lrl (2n”).

2 : . :
Thellfe are (%) monotonic lattice paths from (0,0) to (n, n) in
total.

To prove the theorem, we will partition the set of monotonic lattice
paths into n+ 1 sets of equal size:
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where Ej is the set of Dyck paths.
Since each E; has the same size, the result follows:

on 1 2n
<n> = [Eo[+|Exl+ - +[Epta| = (n+1)[Eo| = |Eol = n+1< ”>'



Define the exceedance of a monotonic lattice path to be the
number of vertical steps of the path that are above the diagonal.
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Figure 2. Monotonic lattice path with exceedance 4.



Define E; to be the number of monotonic lattice paths from (0, 0)
to (n, n) with i exceedances.

As claimed: the E; partition the full set of monotonic lattice paths,
and Eg is the set of Dyck paths.

Our goal is to define bijections
Ei — Eit1

for i =0,...,n. This suffices to prove the theorem.



Each element of E; can be written as BrAuC where

r = first right step below the diagonal

B = the part of the path, possibly empty, preceding r
u = first up step after r that touches the diagonal

A = path between r and u, again possibly empty

C = the rest of the path.

Define E; — E;j11 by

BrAuC — AuBrC.



BrAuC

AuBrC
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4 exceedances

A

5 exceedances




