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ions of the theorem. Then s(p) satisfies

f s(p) contained a pattern ¢ from P:;_.;,

ntain

then it follows from Proposition 14.2 that p wt:ould hav;;::v z«:n me

attern from P;. (There had to be something large : o

znl:ries playing the role of t+1 and 1in ¢.) 'I"herz onia; s
(t — 1)-stack sortable by the induction hypothesis, so p

as specified by the condit.
condition C¢-1. Indeed, i

table. ' b
(20) i:’:a claim that there are no such permutations. We kn ¥y

: . by
= here f is the map given

14.5 that s(p) = s(f(p)), W is . o

16*:;1:3;0“ 14.8. On the other hand, Proposition 14.4 shows tha

P (p)
= n—1. Therefore, if n is even, then one of pand f
fn(ﬂ:. :zf,\{é?rz odd number of descents, and thc-:\loth(t;:)oiesr(x}u(;t; ;ave
an even number of descents. So p £f (p): while ;2 T—h el
hat is not true. A counterexample is 163452. ;
S stack sortable because of the 2341-pattern 3‘45 ! :
The “only if” part is true. If there are at least two el::tr;ieshzno: 1::.
hat are larger than the entry ¢ locatffd on t. e rig I}
e d b be the leftmost two entries with this property..
e llvett;e?lnabnc is a 2341-pattern, and if b<a, then.abnc l? a
‘;2:1-];’)attem that is not part of a 35241-pattern. (There is nothing

between a and b that is larger than c.)

tion is not 2-

Chapter 15

Who Knows What It Looks Like, But
It Exists. The Probabilistic Method

We use the words “likely” or “probable” and “likelihood” or “probability”
every day in informal conversations. While making these concepts abso-
lutely rigorous can be a difficult task, we will concentrate on special cases

when a mathematical definition of probability is straightforward, and con-
forms to common sense.

15.1 The Notion of Probability

Assume we toss a coin four times, and want to know the probability that
we will get at least three heads. It is clear that the number of all out-
comes of the four coin tosses is 2% = 16. Indeed, each coin toss can
result in two possible outcomes. On the other hand, the number of fo-
vorable outcomes of our coin tossing sequence is five. Indeed, the five
favorable outcomes, that is, those containing at least three heads, are
HHHH HHHT,HHTH,HTHH, and THHH. Our COmMmMON sense now
Suggests that we define the probability of getting at least three heads as the
ratio of the number of favorable outcomes to the number of all outcomes.
Doing that, we get that the probability of getting at least three heads is
5/16.

This common sense approach is the basis of our formal definition of
probability. It goes without saying that we will have to be a little more
careful. For instance, the above argument assumed, without mentioning it,

that our coin is fair, that is, a coin toss is equally likely to result in a head
or tail.
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Definition 15.1 Let € be a finite set of outcomes of some sequence of
trials, so that all these outcomes are equally likely. Let ACS. Then Qis
called a sample space, and A is called an event. The ratio

|4
P(A) = —
@ =Taj
is called the probability of A.
In particular, P is a function that is defined on the set of all subsets of

2, and 0 < P(A) < 1 always holds.
There are, of course, circumstances when this definition does not help,

namely when  and A are not finite sets. An example of that situation is
to compute the probability that a randomly thrown ball hits a given tree.
As the ball could be thrown in infinitely many directions, and would hit the
tree in an infinite number of cases, the above definition would be useless.
We will not discuss that situation in this book; we will only study finite

sample spaces.
Note that if A and B are disjoint subsets of §2, then we have |A U

B| = |A| + |B|, and therefore, P(4 U B) = P(A) + P(B). In general, we
know from the Sieve formula that |4 U B| = |4| + |B| — 14N B|, implying
P(AUB) = P(A)+ P(B)—- P(ANB). A generalization of this observation
is the following simple, but extremely useful inequality.

Proposition 15.1 Let Ay, Az, .-+, A, be events from the same sample
space. Then we have

P(AjUAU---UA,) L P(A;) + P(A2) + -+ + P(Az).

Proof. We simply have to show that
|A U U dn| € |Ar|+- 0+ |44l
This is true as the left-hand side counts each element of the sample space

that is part of at least one of the A; ezactly once, while the right-hand side
counts each element of the sample space that is part of at least one of the

A; at least once. o

The reader has already been subjected to some training in basic enumer-
ation in Chapters 3-7. Most exercises in those chapters can be formulated
in the language of probability. For example, the guestion “how many SiX-
digit integers contain the digit 6" can be asked as “what is the probability

e

The Notion of Probabil:'ly

that a randomly chosen six-
we do not cover these basic

section by two examples tha
be,

digit integer Contains the digit, g
questions again here, Instead we
]

i -
show how counterintusiiye Probabilities cap

Example 15.1 In one

. of the lottery games avaj i
bers are drawn from the set of numbersgl 2,.. -?Wallable R
that a randomly selected ticket will contai;l at

da, six num-
»36. What is the probability
least one winning number?

Some people tend t 8
O answer D= = 1 to thi :
9% § 1S question.
1'51[:1]:; ans;v?r would be correct if only one number were d’f::i m; o
er of favorable outcomes would indeed be six and the nu;r1b henft:;:
J er o

outcomes would indeed b
. ; e 36. However, wh i
Situation is more complicated. T e s

Proof. Let A be the
event that a ticket contaj
num ns at least o inni
numE:: ' a;‘llcli let B be the event that a ticket does not contain al;e W.lnn'mg
P(B) % : ?Ir|x clearly, A and B are disjoint, and AUB = si)’ ;1(11: e
contain_-an‘ ’herefore, it suffices to compute P(B). For a t;cket not) t+
Y winning numbers, it has to contain six g 4
tain six -winni
The number of ways that can happen is (). Theret:)c:: Mmoo
)

30
PA)=1-PB)=1- (o) =1 - 0.3048 = 0.6952.

D

Note tha isj
d et m:, Xﬁzn A ?nd. B are two disjoint events, then we say that A4
e Y exc ‘uswe. ‘In other words, it is not possible that 4 and
P gether. If, in addition, we also have A UB =1, then
is the complement of A. We denote this by writing 4 '= B Wi

Exa

mo:gu:‘l}:ze :15;,21,0 i:;ti people are present at a party, and there is nobody

ey orn c3n Fet?ruary 29. Adam proposes the following

ol year). s .guest writes his or her birthday (just day and month

R year) o n?le(}:,e of paper. If there are two pieces of paper with tht;

e o e » then Adam wins, if not, then Bill. When Bill heard
» he looked around, and sajd “Fine, there are only forty people
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here, much less than the number of days in a year, so I am bound to win.”
What do we think about Bill's argument?

Proof. The problem with Bill's argument is that he fails to note the differ-
ence between one hundred percent probability and more than fifty percent
probability. If we want to be one hundred percent sure that there will be
two people in the room having the same birthday, then we would indeed
need 366 people to be present. To have more than fifty percent chance is
an entirely different issue.

In what follows, we prove that if there are at least 23 people at the party,
then Adam, not Bill, has more chance of winning this game. In order to
prove this, it is clearly sufficient to provide a proof for the case when there
are exactly 23 people at the party as any additional person just improves
Adam'’s chances.

Let us compute the probability that there are no two people at the party
who have the same birthday. For that to happen, the first person’s birthday
can be any of the 365 possible days of the year, that of the second person
could be any of 364 days, and so on. So the number of favorable outcomes
is {365)23. On the other hand, the number of all outcomes is obviously
36522, Therefore, the probability that there are no two people in the room

whose birthdays coincide is

365-364---343  364-363---343

1
658 - 365 2

Therefore, the probability that there are two people at the party who do
have the same birthday is more than one half. (]

Finally, we point out that the condition that nobody was born on Febru-
ary 29 was only included to make the situation simpler. Indeed, February
29 exists only in leap-years, so the chance of being born on that day is 1/4
of the chance of being born on any other given day. That would make the
outcomes in our sample space not equally likely, contradicting the definition
of sample space. We could help this by changing our sample space from the
365-element set of dates in a year to the set of 4 - 365 + 1 = 1461 days ofa
4-year cycle. That would make computations a little more cumbersome.

R
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15.2 Nonconstructive Proofs

If there are balls in a box, and we know that the Probability that a rand, ml
randomly

. » then we can certaj
there is at least one blue ball in the box. This thought s?etﬂli z(::e‘iUdg th?t
Y simple

at first sight, but it has
) proved to be extre i i
as the following examples show. mevsht e Pl
Recall that in Cha
pter 13, we defined the symmetri
. ¢ Rams

f(lg k).l For easy reference, this was the smallest positive integerej;on:‘,lllanbgr

e 2-color the edges of the complete graph on R(k, k) vertices al g
get E K} subgraph whose edges are all the same color AT
» e;elisut;rif a:.:: ﬁmli a ]one:{ bound for R(k, k) by proving that R(k, k) >

. a closer look at this statement. What it i G
a complete graph on 2%/2 vertices. then it i osi Bl
» then it i3 possible to 2-col
2 ‘ olor the edges
N :t(; :::t:? mgllllochromatlc copy of Ky is formed. When we proved siglr::l::
In Uhapter 13, showing that R(3,3) > 5
pilLo , y or R(4,4) > 17
l[.::cr,ctwecl thfam by actua.mlly providing a coloring of K5 or K 17 th;,t )indeed’ dYs
e corll]ta.m the 1:equ1red monochromatic copies. However, this was more
prz.n v:ha: -v:e strictly needed to do. To prove R(k k) > 2%/2 it suffices to
ve that it is possible to 2-color the ed ‘ :
] . ges of G so that no monochromati

;:;py f’f K} is formed; it is not necessary to actually find such a colo ?’ y

e will shortly see how big a difference this is. it

Theorem 15.1 For alt positive integers k > 3, we have Rk, k) > 2/2

P —
: ;o::;h L:;gf = K, .f,i: and let us color each edge of G red or blue as follows
» We Hip a coin. If we get a head, we col .
otherwise we color that ed i i ol s e
ge blue. This way each ed ifl b i
probability one half, and blue wi ili . We ate st
i ith probability one half, Wi i
show that the probabilit e Koghe
y p that we get no monochromatic X

- . * L b
;n G this way is more than zero. On the other hand, p = |£ thl; lsllfnmgl::f:;
sz;:c;rfa:llle outt:tt:lmzs divided by the number of all outcomes ,where 1 is the

possible 2-colorings of the edges of a com ’
ible 2 . plete graph on n vertices.
theioif; (l) 1mtp]1es tIl;at there is at least one favorabie outcome, that is
east one K, with 2-colored ed tai :
monochromatic Kj-subgraphs. it el
e a]]::;t:;d of .];:])ving that p > 0, we will prove that 1 — p < 1, which is
equivalent statement. Note that 1 — p j it
p is the probability that

get at least one monochromatic subgraph in our randomly color);d gr:a::l‘l3
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= K,. - .
¢ The number of ways to 2-color the edges of a given Ky-subgraph of K.

is clearly 2(3) as we have two choices for the color of ea?h eclge.';i Ou:e:f
all these colorings, only two will be monochromatic, C'DI{E with all e gzsoml ,
and one with all edges blue. Therefore, the probability that a ran y
chosen K-subgraph is monochromatic is
2 _ (8,
o(2)
The graph K, has (}) subgraphs that are isomorphic to X 6 . ()tzvio:fllg;
to be monochromatic. On the o
each of them has the same chance | . o
ili ¢t one of them is monochroma
hand, the probability that at leas 25 o
' ™) indivi babilities, by Proposition 15.1.
t the sum of these ( k) individual pro
zf;r words, if Ag denotes the event that the Ki-subgraph S of G has
monochromatic edges, then

P(UsAs) £ Y P(As) = (:)21—(2), (15.1)
s

where S ranges through all K-subgraphs of G. Now assume, in atlzcorda.nlc)::
with our criterion, that n < 2%/2. Then the last term of (15.1) can

bounded as follows.
k : 2. 2k’/2 2k/2
n\ __(* n 1-(%) -
(k)zl (=)<E.2 (G <

TN

i ity i for example by
for all ¥ > 3. The last inequality is very easy to prove, for p v

<1,

induction.

We have seen in Chapter 13 that R(k, k) < 4%. Our latest reslt:lt s::::
that (V2)* < R(k, k). These are essentially the best known results ;,_ 5
size of R(k, k), so there is a lot of progress to be made on Ramsey nu :

Theorem 15.2 Let n and m be two positive integers large}' }t?an 1’;:1:.
. it i ible to color each edge of Knn

let m > 2.01log, n. Then it is possi : ' .

beiue 30 that no Ii' m.m-Subgraph with monochromatic edges is formed

W - .V Sub‘

Proof The numbel‘ Of ays to 2 CO]Or the edges Df a'g'l en Km|m -

gra'ph .Of K iS 2 and two Of these Colorings result mn monochromatlc
n,n ]

R
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subgraphs. Therefore, the probability
2

Hom,m is formed is at most ()?gt-m?,

that at least one monochromatic
n
m.

Therefore, aj] we have tg prove ig

2( ) < 2™,
m

To see this, we insert two intermediate expressions as follows.

2
z(n) <nt™ < (2m/2)Im < gt
m

¥

where the second inequality is a simple consequence of the relation between
n and m. m]

Note that the only property of the number 2.01 in the condition m >
2.01log, n was that it is larger than 2. So any number 2 + ¢, with ¢ > 0,
would do.

Another way to formulate this same theorem is as follows. If m >
2.01log, n, then there exists a matrix of size n x n whose entries are either
0 or 1 having no m x m minor that consists of zeros only, or of ones only.

What is amazing about this result is that nobody knows how to construct
that matrix, or how to color the edges of K, , so that the requirements are
fuifilled. In fact, the gap between what we can do and what we know is
possible is rather large. The best construction known to this day for an
7 X n matrix with zeros and ones, and not having m x m homogeneous
minors works for m = ¢ n, where c is a constant. This is much more than
what we know is true, that is, (2+¢€)logy n.

15.3 Independent Events

15.3.1 The Notion of Independence and Bayes’ Theorem

Let us throw two dice at random. Let 4 be the event that the first die
shows six, and let B be the event that the second die shows six. It is
obvious that P(A) = P(B) = 1/6, and P(AN B) = 1/36. We see that
P(4)-P(B) = P(ANB), and start wondering whether this is a coincidence.
Now let us pick a positive integer from [12] at random. Let C be the event
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that this number is divisible by two, let D be the event that this number is
divisible by three, and let F be the event that this number is divisible by
four. Then we have P(C) = 1/2, P(D) = 1/3, and P(F) = 1/4. We also
have P(Cn D) = 1/6, and P(D N F) =1/12, s the “product rule” seems
to hold, but we also have P(CN F) = P(F) =1 /4 # P(A)P(B), breaking
the product rule.

Why is it that sometimes we find P(A) . P(B} = P(An B), and some-
times we find P(A)- P(B) # P(ANB)? Asyou have probably guessed, this
is because sometimes the fact that A occurs make the occurrence of B more
likely, or less likely, and sometimes does not alter the chance that B occurs
at all. For example, if we choose an integer from 1 to 12, then the fact that
it is divisible by two certainly makes it more likely that it is also divisible
by four. Indeed, the number of all possible outcomes decreases from 12 to
six, while that of favorable outcomes does not change. On the other hand,
the fact that our number is divisible by two does not change its chances to
be divisible by three. Indeed, the number of all outcomes decreases from
12 to six, but the number of favorable outcomes also decreases, from four

to two.
This warrants the following two definitions.

Definition 15.2 If A and B are two events from the same sample space
Q, and P(A N B) = P(A) - P(B), then A and B are called independent
events. Otherwise they are called dependent.

Definition 15.3 Let A and B be events from the same sample space,
and assume P(B) > 0. Let

P{(ANB)

P(AIB) = —5r5;

Then P(A|B) is called a conditional probability, and is read “the probability
of A given B”.

That is, P(A|B) is the probability of A given that B occurs. The following
proposition is now immediate from the definitions.

Proposition 15.2 The events A ond B are independent if and only if
P(A|B) = P(A) holds.

In other words, A and B are independent if and only if the occurrence
of B does not make the occurrence of A any more likely, or any less likely.
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347

Example 15.3 We toss a coin four times
results, but we are told that there are at least
What is the probability that all four tosses r

We are not allowed to see the
two heads among the results.
esulted in heads?

Proof. Let A be the event th
at all four tosses
(;’(E;lt that there are at least two heads. Thenajzwle,-i1 ?d: :n(l le;B be the
= 31 = 7. There is 1/16 chance to get f &
chance_ to get three heads and one tail, and 6/16 changce tc? E th:ads, L
two tails. Therefore, P(B) = %},, and P(A[B) = 1/11 get two heads,
' 0

Example 15.4 Let

: . P = mp2---p, be a randoml

i);;:nutatlon. Let A be the event that P1 > pa, and let By biel:lf;e:v ﬂ;
P2 > pa. Compute P(A|B), and decide if A and B are independen:n

Proof. Clearly, P(4) = P(B)
' 4) = = 1/2 as can be seen by reversi
relevant pa.1.r of entries. On the other hand, AN B is the 3ventv i:::g v
P2 > p3, which occurs in 1/6 of all permutations. Therefore g~
fif(03))
P(B)

s0 A and B are not independent.

P(AlB) =

Lo
/2~

I =t

# P(4),

O

the\l’;t; rf;t:::l :: th;ef previous example was probably something along
Rl ne. alpl > pa, then p, is smaller than normal, so it
- ormal that ps > p3.” While that argument works in

» one should be extremely careful when injecting intuition into

arguments invelving conditional probabiliti i
striking instance of this. P ilities. The following example is a

Ex -
andmtnlll;e)l(e: (:)llf.5 ;.A Um.versn‘ty has two colleges, the College of Liberal Arts
per the O ege of Engineering. Each college analyzed its own admission’
i :nad ealch collige found that last year, a domestic applicant to the
a larger chance to be admitted th i i
e - an an jnternational applicant.
e we (l:fmclude that the same is true for the entire university? I()f‘issume
apphicants can only apply to one college.)

Proof. No,

we cannot. A counterexample is shown in Figure 15.1. 0O
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Entire
Liberal Arts Engineering Ui
Admitied: 10 Admitted: 10 Admitied: 20
i ied: Applied: 130
Domestic Applicd: 120 Applicd: 10 p
applicants i
i success rate:8.3% success rate: 100% success rate: 15.9%
itted: Admitted: 91
International Admitied: 1 Admitted: 90
applicants
Applied: 115
Applied: 15 Applied: 100 pp
:79.1%
success rate:6.7% success rate:90% suceess rate

Fig. 15.1 Not all that glitters is gold.

) . ible?
How is this very counterintuitive fact called S:mp'son -.1 l;:a:;:d.azoy;t:s;l;z
ieve it even when they see it wi eir ;
Some people do not believe i il
i i ly correct, explanation is this.
An imprecise, but conceptual : . . e
portioxr: of th; international applicants a.pphed- t(.) Engm::r:;ntgl;ew;l:;festic
tance was higher. While it is true tha :
e o o o in that college, it concerned
i tance rate in that college,
dents had an even higher accep : !
f)t:;y l?alf of all domestic applicants, versus more than 85 pfe:l:;arllttoi :;t::;x;:l
i than 85 percent o inte
tional applicants. In other words, more
a10 Iicazl:tg got into Engineering, whereas less than 16 percent of a.l; golzt;::-l
til::papplicants did. This is a huge difference, and the Collige of Li
Arts, with relatively few applicants, ca.nnot.‘ma.ke up .for tha:l B -
In order to find a more precise explanation, we will nee y

rem.

. Let A and B be mutually ezclusive
heorem 15.3 [Bayes' Theorem/ e
’::Je:::so that AU B =, and P(A)P(B) > 0 holds. Let C be any eve

Then (15.2)

P(C) = P(C|A) - P(A) + P(C|B) - P(B).
. : n-
In other words, the probability of C is the weighted average of its co.
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ditional probabilities, where the weights are the probabilities of the condi-
tions.

Proof. As A4 and B are mutually exclusive, AN C and B N C are disjoint,
and since AURB = 2, their union is exactly C. Therefore,

P(C)=P(CNnA)+P(CnB),

and the proof follows as the first (resp. second) member of the right-hand

side agrees with the first (resp. second) member of the right-hand side of
15.2. ]

. Now we are in a position to provide a deeper explanation for Example
15.5. Let A, (resp. B, ) be the event that an international (resp. domestic)
applicant applies to the college of Liberal Arts, and define A, and B; sim-
ilarly, for the college of Engineering. Let ¢, (resp. C3) be the event that
an international (resp. domestic) applicant is admitted to the university.
Then Theorem 15.3 shows that

P(C1) = P(C1|41) - P(4,) + P(Cy|By) - P(By),

and
P(Cy) = P(Ca|A,) - P(Az) + P(Cy)B,) * P(B,).

The criterion requiring that domestic students have larger chances to get
accepted by any one college ensures that P(Ci|A)) < P(C;]A2), and
P(Ch)B)) < P(C2|By). It does not, however, say anything about P(4,)
and P(B,). (We know that Az is the complement of Ay, and B, is the
complement of B;.) Therefore, we can choose A; and B, so that it is very
advantageous for P(C}), and very bad for P(Cz). We can do this by choos-
ing P(A;) to be large if P(CyA,) is large, and by choosing P(A;) small if
P(Cy|4,) is small. Similarly, we can choose P(Az) to be large if P(Cy|4;)
is small, and vice versa.

In other words, weighted averages are a lot harder to control than
unweighted averages. Indeed, if we impose the additional condition that
Pl41) = P(B,) = 1/2, or even only the condition P{4,) = P(By), then
the domestic students would have a greater chance to be admitted to the
University,
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15.3.2 More Than Two Evenis

It is not obvious at first sight how the independence of three or more events
should be defined. We could require that P(41NAz -+ - A,) = P(A;1)-P{As)-
...+ P(A,). This, in itself, is not a very strong requirement, however. It
holds whenever P(A;) = 0, no matter how strongly the other variables
depend on each other. To have some more local conditions, we can add
the requirements that P(A; N A;) = P(A,)P(4;) for all i # j. However,

consider the following situation.
We select a positive integer from [10] at random. Let A be the event

that this number is odd. Now let us select an integer from [20] at random,
and let B be the event that this number is odd. Finally, let C be the event

that the difference of the two selected integers is odd.

It is then clear that P(4) = P(B) = P(C) = 1/2, and also the events
A, B, and C are pairwise independent, that is, any two of them are inde-
pendent. However, P(ANBNC) = 0 # P(A}P(B)P(C) = 1/8. Therefore,
we do not want to call these events independent, either.

We resolve these possible problems by requiring a very strong property

for a set of events to be independent.

Definition 15.4 We say that the events A, 43, -+, A, are independent
if, for any nonempty subset S = {i1,12,---,ix} =C [n], we have

P(A;, NA; N N A ) = P(A;) 'P(Al':) - P{A;,).
Theorem 15.3 is easy to generalize to more than two conditions.

Theorem 15.4 [Bayes’ Theorem, General Version] Let A1, Az, -+, An be
events in a sample space Q) so that A;UAzU---UA, =9, and A;NA; = @
ifi# 4. Let C C Q2 be any event. Then we have

P(C) = Y P(ClA:)P(A:).

=1

Proof. Analogous to that of Theorem 15.3.

15.4 Expected Values

A random variable is a function that is defined on a sample space {1, and
whose range is a set of numbers. For example, if 2 is the set of all graphs
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on n labeled vertices, we ¢
: an define the random yar:
to b.e the number of edges of G, or we can del'"ln;?}:ea ek
sett;ngtY tc; be the number of connected component:?:'dco
ust as for functions, we can defip
_ e the sum apg
;{arlables over the same sample space the usual way, thal.::*,“?duct o Dedon
W+ Y@, od (X V) = X)- ¥y, O Y=
ossibly the most im .
o portant and useful parameter
: of i
18 its expected value, or, in other words, ezpectation oraa::rf;:n v?nable
) value, or

by setting X (G)
m variable ¥ by

Definiti
efinition 15.5 Let X : 0 —+ R be a random variable so that the set

S = {X(u)lu € 0} is finite, that |
Then the mumber » that is, X" only takes a finite number of values.

E(X)= Zi.p(x =)
€S

is called the expected value, or ezpectation of X on 0

Here, and through i
) ghout this chapter, P(X = ;) i ili
everIlt that X (u) =i. That is, P(X =) =-.( "EQI’)" l“S:t?e protabily olithe
- - n :
s :e?;?,i: ::ir:s, E(; ) is the weighted average of all values X takes, with
g equal to th ili i ,
7y e probability of X taking the corresponding
R [T T] n
. :::;trks. Some probability variables can be defined over many differ.
ot s d]; ; sgaces.. Our above example, the number of edges of a graph
g e x;le not just ?ver the space of all graphs on n vertices, or all cfn-'
. i " pIs on crl:l vertices, but also on al] graphs on at most .:J?n vertices
. In ‘
o ot eaf XC?SG, the set S={X(u)|ue Q}is different, therefore
g on of X is also different. Therefore, if there is a danger of con
o éaneg ;f ::f CEQ 1(‘X .), to denote where the expectation is taken. If then;
onfusion, ho i i :
S wever, we will only write £(X), to alleviate
S .
X(G;ngztgr::s we announce both 2 and X in the same sentence as in “let
Sl :m;ll]l?er of edges of a randomly selected connected graph G
el R0 : 18 means that  is the set of all connected graphs on
i , an _X (G) is the number of edges of the graph G € 0 "
. {j( ?z;slble to d_eﬁne the expectation of X in some cases \;rhen the set
po— E(X)u_e ZQ} IS. not ﬁmte.' IfSisa countably infinite set, we can
= Ziest  P(X =) as long as this infinite sum exists. See
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Exercise 4 for an example. If S is not countable, the summation may be
replaced by integration. Details can be found in any probability texthook.
Definition 15.6 The random variables X and Y are called independent
if for all & and ¢, we have

P(X =s5Y =t)y=P(X =s)P(Y =t}.

15.4.1 Linearity of Ezpectation

For any real number ¢, we can define the random variable cX by setting
eX(u) = ¢(X(u)) for all u € Q. The following innocent-looking theorem
proves to be extremely useful in enumerative combinatorics.

Theorem 15.5

(1) Let X and Y be two random variables defined over the same space

2. Then E(X +Y) = E(X) + E(Y).
(2) Let X be a random vaeriable, and let ¢ be a real number. Then

E(cX) =cE(X).
So “taking expectations” is a linear operator. The best feature of this
theorem is that it does not require that X and ¥ be independent! No matter

how deeply X and Y are intertwined, nor how hard it is to compute, say,
the probability that X =Y, the expected value of X +Y is always given

by this simple formula.

Proof.

(1) Letr € Q, then by definition we have X (r)+Y(r) = (X +Y)(r), so
X(r)P(r) + Y(r)P{r) = (X + Y)(r}P(r). Adding these equations
for all r € 2, we get

EX+Y) = Y.(X+Y)nP(r) =Y X()P@F) + Y Y()Pr)

req rest refl
E(X) + E(Y).

(2) Let 7 € (2, then by definition we have (cX)(r) = cX (r). Adding
these equations for all r € 2, we get

E(cX) = 3_(X)(r)P(r) = ¢y X(r)P(r) = cE(X).

refl refl

O

B
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To see the ‘surprising strength of Theorem 15.5 let
an.n-peljmutatmn, and let us say that i is a vajle .if >
of its neighbors, that is Pi < pi—1, and p; o
for i to be a valley. ‘

YP=pmpipz--.p, be
1s smaller than hoth
< Pi+1. We require 2 fi<n-1

Theorem 15.6 et n 2> 2 be a positive mieger.

randomly selected permutation of length n has (n-2) Then on average, a

/3 valleys.

Without Theorem 15.5, this would be a painful task, We would have t
: ave to

compute the number v{; ;
X 7) of n-permutations with 7
J valleys f ;
lc}hﬂicult task), then we would have to compute 3", 5 - ,,[.!-V sTEr each j, (a
owever, turns the proof into a breeze. i al - Lheorem 155,

P . —2di

onrot}c:f Take n — 2 different probability variables Y2,Ys,---,Y,_,, defined

o e_ selzt.;:)t: i-i.ll n-permutations as follows, For an n-perrl;u:a;;c’)n P nl\?at:
ilP) = 1ifiis a valley, and let Yi(p) = 0 otherwise. It is clear that’ for

2<i<n-1, ever
L= , Y pi has a 1/3 chance to
{p.-_l,p,-,p,-.l_l}. Thodioes, be the smallest of the set

1 2
E(Y,)=-.1+%.0=
(¥:) 5 1+3 0=

G2 )

Define Y =¥, + ¥, 4 .
Yo Itiscl i
valleys of p. Then Theorem 15'.,5 implies ear that ¥(p) is the number of

n=1
BY) = 3B = (n-2)- B = 22

=2

0O

Vari .. . .
eventa;::ables similar to ¥;, that is, variables that take value 1 if a certain
curs, and valye 0 otherwise, are called indicator variables

Theorem 15.7 The
. expected value . .
randomly selected n-permutation is 1. of the number of fized points in a

Proof. We define n differ
ent probability variables X,. X,....
set of all n-permutations as follows. For an n-permutai,;onz;y le;;)f; (:l; th_‘f
] i =

if p; = 1, that is, when p h
’ as . e
ek p a fixed point at position i, and let X;{p) =0
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Y ¥ ¥ j € i cha.nce to
3
be equa.l to i. Therefore,

'0=_:

n

i
E(X)=_-1+

- t X (p)
o €ln w = X+ Xo+-++Xn; it is then clear tha X_p
alli . Now define X = X; +X» .
'f | el:isel[ E'.he number of fixed points of p. On the other hand, applying
is pr y

Theorem 15.5, we get

; ! 3
E(X)=Y E(X)=n-E(X))=n-—=1, (15.3)

i=1

(i}
which was to be proved.
15.4.2 Ezxistence Proofs Using Expectation

g
g

as well.

dom variable so that the set
Let X : @ = R be a ran
';‘he?r}{e (r:)ltse-sﬂ} i: finite, and let j be the largest element of S. Then we

have
j 2 E(X).

Proof. Using the definition of E(X), we have

, . A L= 2
=Y i-P(X=1i)<j) P(X=i)
E(X) 1625 €S
imple
We show two applications of this idea. The first shows that a simp
es . .
graph will always contain a large bipartite subgraph.

i d m edges.
Theorem 15.9 Let G be a simple graph with vertez sejz[nl:i a;
Th:n G conteins a bipartite subgraph with more than m g

isjoi ubsets

f. Let us split the vertices of G into two disjoint nor;e;npt(y v:e o

Pmod.B eThen A and B span a bipartite subgraph H2 ,?-1 — A
glem;dges' within A and within B.) Let Q be the set of

Ezpected Values 355

bipartite subgraphs we get this way. Let X(H) be the number of edges in
H.

On the other hand, let us number
and let X; = 1 if the edge 1 has one
X; = 0 otherwise,

What is P(X, = 1)? Toget sucha subdivisi
endpoints of the edge ¢ to different subsets, th
element vertex set in any of 2"~2 ways. The

and P(X; = 0) = £3=L. This implies

the edges of G from one through m,
vertex in A, and one in B, and let

on of [r], first we put the two
en split the remaining n — 2-

refore, P(X, = 1) = 5%:1-;1-,

n—2
EX) =0 PXi=0)+1.P(X; = 1) = 23_1 —> _21_

We can repeat this argument for all edg

es. Then we note that X = Xy +
Xo+- 4 Xom, 50 Theorem 15.5 implies

E(X) = iE(X,) =m.E(X,) > %

i=]

As the expected value of the number of edges in these bipartite subgraphs
of G is more than m/2, it follows from Theorem 15.8 that there is at least
one bipartite subgraph of ¢ with more than m/2 edges. ]

The next example is related to a well-known problem in complexity
theory, the so-called “Betweenness Problem”.

Example 15.6 We are given a list L = (L, Lg, -
L; = (ai, bi,¢:), so that for any i, the numb
elements of [n]. It is possible, however, that
i and j denote the same number,

Let p = p, P2 -p, be an n-permutation. We say that p satisfies L; if

the entry b, is between a; and ¢ inp. (It does not matter whether the order
of these three entries in P is a;bic; or ¢ibia;.)

Prove that there exists all n-permutation p that satisfies at least one
third of all L; in any given list L.

*» Ly) of ordered triples
ers a;, b;, and ¢; are distinct
symbols with different indices

Proof. Let Y; be the indicator varia
R-permutation satisfies L;. Then ¢l
and ¢; has the same chance to be

ble of the event that a randomly chosen
early, P(Y; = 1) = 3 as each of a;, b;

in the middle. Therefore, E(Y;) = Ly




Who Knows What It Locks Like, But It Ezists. The Probabilistic Method
Ezpected Values
357

J ]

Nowif ¥ = EL, Y;, then Y is the number of L, in L that are satisfied by
event X = jj
Jin that theorem. Then multiply both sides by 7, and sum
' over

p. Theorem 15.5 then implies

all values of § .
) of j taken by X with a positi -
EY)= Z EY;))= g, a posiiive probability, -

i=1 Example 15.7 We thr )

. ow a die three times. Provi
was at least ‘ es. Provided that t

four, what is the expectation of the number of t::::iert :;1“'0“’
a throw

and our claim follows from Theorem 15.8. Let ¥; be the indicator variable of

the event that a randomly chosen n-permutation satisfies L;. Then clearly,
PY;=1) = % as each of a;, b; and ¢; has the same chance to be in the

middle. Therefore, E(Y;) = % NowletY = Ef=1 Y;, then Y is the number even results
of L; in L that are satisfied by p. Theorem 15.5 then implies throw was a: (:::IWOUSIZ two as it is one on the last two throws. If the f
odd number, th ] o e first
x L 15.10 implies » then this expectation is 1. Therefore, Theorem
E(Y) =§Em) =3 ,
B(X) =3 B(X|A)P(4)= 2.9, 1 ;5
and our claim follows from Theorem 15.8. m} i=1 3 3 T3 &
In this problem, it w
. 3 as very easy to ¢
15.4.3 Conditional Ezpectation The following problem is a little bit less ot?:rril::: ‘:nt}tl; l:mbablhtles P(4;).
at aspect,
Another way of computing the expectation of a variable is by using condi- Example 15.8 Qur football team wins each .
tional expectations. E(X|A) is the expected value of X given that even A What is our expected value of wins in a 129a gome wl_th 3/4 probability.
won at least three of the first four games? same season if we know that we

occurs. Accordingly, E(X|A) is defined by replacing the absolute probabili-
ties in the definition of E(X) by probabilities conditional on the occurrence
Proof. We ¢
ot ot theeﬁi;ih?; won three games (event A1), or four games (event A
ur games. If we disregard the condition thag we w02 )
1

of A. In other words,
at least
three games out of the first four (event B), we have P(Ay)
] l =

E(X)|4) =) i P(X =i|4),
. 4. 1(2 )3 — 27
a\3) == g1, and P(A;) = (3)4 = 81 b
us to the conditional prob:biliti(gs) 754- Lhat condition, however, leads

PANB) &

where i ranges through all values X takes with a positive probability, given
P(B) ar 8L

P(4,|B) =

that A occurs,
We can then extend Theorem 15.4 to expectations as follows.
and

Theorem 15.10 Let X be a random variable, and let Ay, Ag, -, Ay be
events in a sample space Q so that AU A2V --UA, = Q, and A;NA; = @

if i # 3. Then we have

P(4,|B) = P(42n B) _3
P o P(B) 7
n thi
E(X)= Z E(X|A;)P(A:). ace '1:: g;:;:e‘!} Wl:hassume that B occurred, that is B is our 1
. asize this, we will wri ¥ ' mpe
denote the expectations a.ccordinlglywnte FPg(A;) instead of P(4|B). We

i=l
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?
€l = ]
1S C a y

our wins by X, Theorem 15.10 shows

—9-2410.32020
Eg(X) = Eg(X|A1)Pp(4A1) + Ep(X|A2)Pa(Az) = z = =97

ion without

We see that this expectation is larger than 9, the ixpect;l:z: gitiont

the condition that we won at least three of the first four g “ .WhiCh s
because that condition allowed us to win all four of those games,

better than our general performance.

Notes

. . the
Probability Theory itself as on
i ter was not as much on ‘ : e
:pl;rl,ic(:t}.lizﬁseof Probability in Combinatorics. While there ;:.r‘::nplljeir:;ngete
ili itself, there are not as man,

ks on Probability Theory itself, % as o
teth?ol;)ilit that is, when Q is finite. A very accessible lrlltroduc;?ritorics

PrCt'.hat. ﬁellrc,i is [9]. As far as the Probabilistic Method in Combin

in tha .

goes, a classic is [1].

Exercises

b-
(1) Let p, be the probability that a random text of Tl.letlfer:u l::.s al.) ::ve
stringﬂ of consecutive letters that reads “Probability is c
hat lim =1 e
(2) tJZKE:)ig co’:’;c:ation has four level of (:OmmandshTh;a2(;‘1~:i‘:')h ;s i:: i
i bordinates (level 2),

, (level 1) she has some direct su e
;(;F\,re(their olm direct subordinates (level 3), and even ]l;h:rs; 5:.' ll:as
have their own direct subordinates (level t'l). Nobody: 0 o .tme
more direct subordinates than his immec'hate superws;il;:.er 1
that the average number of direct subordinates of' an o e
i is always higher than the average number of direct su

officer on level i +- 17 -

(3) zf::)men’s health clinic has four doctors, a:nd each pa.ltllesnam -

signed to one of them. If a patient gives birth betiweed i
4151‘;1 then her chance of being attended by her assigne
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3/4, otherwise it js 1/4. What is the probability that a patient is
attended by her assigned doctor when she gives birth?

{4) We toss a coin a finite number of times. Let S denote the sequence
of results. Set X(S) =i ifa head occurs in position i first. Find
Eq(X), where ? is the set of all finite outcome sequences.

(5) Show that for any n, there exist n events so that any n — 1 of them
are independent, but the n events are not,

(6) At a certain unijversity, a randomly selected student who has just
enrolled has 66 percent chance to graduate in four years, but if he
successfully completes al] freshmen courses in his first year, then

plete at least one freshmen course in their first year, the 4-year-
graduation rate is 50 percent. What is the percentage of all stu-
dents who cannot complete all freshmen courses in their first year?

(7} We select an element of (100] at random. Let A be the event that
this integer is divisible by 3, and let B be the event that this integer
is divisible by 7. Are A and B independent?

(8) Six football teams participate in a round robin tournament. Any
two teams play each other exactly once. We say that three teams
beat each other if in their games played against each other, each
team got one victory and ope loss. What is the expected number
of triples of teams who beat each other? Assume that each game
is a toss-up, that is, each team has 50 percent chance to win any
of its games,

(9) Solve the previous exercise if one of the teams is so good that it
wins its games by 90 percent probability.

(10) What is the expected value of the number of digits equal to 3 in a
4-digit positive integer?

(11) Let X(a) be the first part of a randomly selected weak composition
@ of n. Find E(X).

(12) Let Y(a) be the number of parts in a randomly selected weak com-
position a of n. Find E(Y).

(13) Let 7 be a randomly selected partition of the integer n. Let X {(p)
be the first part of 7, and let Y(p) be the number of parts in .
Find E(X) - E(Y).

(14) Let p = p, P2---pn be an n-permutation. The index 7 is called an
ezcedance of p if p(f) > i. How many excedances does the average
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o

-permutation have? .
{(15) ;:el:. k be any positive integer, and let n > k. Let ¥ be the nu

. . V).
of k-cycles in a randomly selected n-permuta.tmn.‘lFx-r;d E>( 7) -
16) Recall from Chapter 14 that Sp(1234) < S,.(132h) lv:nt_th;,t o
( be a fixed integer so that n > 7. Let A be the eb ¢ that a2
2— ermutation contains a 1234-pattern, and let SB - ;;_rl e
t.hpt an n-permutation contains a 1324-pattern. 1m124- y;ttems)
" Y) be the number of 1234-patterns (r.esp. 13 EpX|A) )
i(;e:.pr'andomly selected n-permutation. What is larger, E{
P it vertices that contains at
t there is a tournament on n A
oo rm:e f‘l’m Hamiltonian paths. What can we say about the number
eas Fn=T
iltonian cycles? ~ i,
(18) (I)ia:{ ;'mbe a probability variable. Then Var(Y} = E((Y (Y4
is called the variance of Y.

= 2y~ B(Y)?.
that Var(Y) = E(Y?) ‘
3' E::‘; (p)abe the number of fixed points of a randomly selected

n-permutation p. Prove that Var(X) = 1.

the X
(19) For i € [n], define X; as in the proof of Theorem 15.7. Are the X;
i t? _
(20} ?18‘1;: I:rl::inY be two independent random vane;ble; defz;e)d on the
N = ar(Y).
X+Y)=Var(X)+
e space. Prove that Var( .
21) ::’Lnarfgiven alist L= (Ly,La, -, L) of order;d 4-t1;;:1d it
; ., b;,ci,di), so that for any ¢, the numbers a;, bi, ¢, e e
El?;;ir;::t‘;l;n;ents of [n]. It is possible, however, that symbo
i
different indices i and 7 denote the same number. i
: P pn be an n-permutation. We say that p st ol
= P ' :
'I;Fe:hz SuJI;:;trzing of p that stretches from a; to & does lr:iob ;nt e
:.he substring of p that stretches from ¢; to d;. (It cou
is on the right of b;, or ¢; is on the rlgh‘t of d,.) e
Prove that there exists an n-permutation p that sa
rov

one third of alt L; in any given list L.
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Supplementary Exercises

(22) Provethatitis possible to 2-color the integers from 1 to 1000 so that
no monochromatic arithmetic progression of length 17 is formed,

(23) Is it true that if the occurrence of A makes B more likely to occur,
then the occurrence of B also makes 4 more likely to occur?

(24) Let Sbeannxn magic square (see Exercise 24 in Chapter 3) with

line sum r. Let A be the event that each entry of the first row is
at least 37 and let B be the event that each element of the second
row is at least 7o Is the following argument correct?
“We have P(B)4) < P(B). Indeed, if A occurs, then the entries of
the first row are all larger than normal, so each entry of the second
row must be smaller than normal, because the sum of each column
is fixed.”

(25) Can two events be at the same time mutually exclusive and inde-
pendent?

(26) Adam and Brandi are playing the following game, They write each
integer from 1 through 100 on a piece a paper, then they randomly
select a piece of paper, and then another one. They add the two
integers that are written on the two pieces of paper, and if the sum
is even, then Adam wins, if not, then Brandi. Is this a fair game?

(27) Replace 100 by n in the previous exercise. For which positive inte-
gers n will the game be fajr?

(28) A dealership has n cars, An employee with a sense of humor takes
all n keys, puts one of them in each car at random, then locks the
doors of all cars. When the owner of the dealership discovers the
problem, he calls a locksmith. He tells him to break into a car,
then use the key found in that car to open another, and so on.
If and when the keys already recovered by this procedure cannot
Open any new cars, the locksmith is to break into another car. This

algorithm goes on until all cars are open.

a. What is the probability that the locksmith will only have to
break into one car?

b. + What is the probability that the locksmith will have to
break into two cars only?

c. + What is the probability that the locksmith will have to
break into at most k cars?
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(29) There are 16 disks in a box. Five of them are painted red, five of
them are painted blue, and six are painted red on one side, and
blue on the other side. We are given a disk at random, and see
that one of its sides is red. Is the other side of this disk more likely
to be red or blue?

(30) There are ten disks in a basket, two of them are blue on both sides,
three of them are red on both sides, and the remaining five are
red on one side, and blue on the other side. One disk is drawn at
random, and we have to guess the color of its back. Does it help if
we know the color of its front?

(31) A pack of cards consists of 100 cards, two of them are black kings.
We shuffle the cards, then we start dealing them until we draw a
black king. Which is the step where this is most likely to occur?

(32) Let p = pyps - - - pn be an n-permutation. We say that p get changes
direction at position 2, if either p;_1 < pi > Piy1, OF Picy > Pi <
Pit1, in other words, when p; is either a peak or a valley. We say
that p has k runs if there are k — 1 indices { so that p changes
direction at these positions. For example, p = 3561247 has 3 runs
as p changes direction when i = 3 and when i = 4.

What is the average number of runs in a randomly selected n-
permutation?

Solutions to Exercises

(1) First, we note that the sequence {p,} is increasing. Indeed, pn41 =
Pn + Gn, where g, is the probability of the event that the set of the
first o letters does not contain the required sentence, but that of
the first n + 1 letters does.

It is therefore sufficient to show that the sequence {p,} has a sub-
sequence that converges to 1. Such a subsequence is 7» = Pisn-
(Note that the sentence “Probability is fun” contains 16 letters.)

Let a be the probability of the event that a randomly selected 16-
letter string is not our required sentence. Then a < 1. On the other
hand, r, > 1 — a™ as we can split a 16n-letter string into n strings
of length 16, each of which has a chance to be something else than
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our sentence. So we have

l-a"<r, <1,

. ;111:: tqur claim follotvs by the squeeze principle as a™ ~ ¢
18 not true. Figure 15.2 shows a counterexample In;ieed th
! , the

average number of direct subordi
) Inates of level- :
1.5, while that of level.3 officers is 10/6 = 1‘33'691 2 officers is 6/4 =

CEO (level 1)

level 2

level 3

level 4

Fig. 152 A counterexample for Exercise 2,

chane ; .
4pm and 8am. Therefore, B @ that she gives birth between

y §

(4) Tl.le only way for the first hea
tail in each of the first i — 1
The chance of this happening

d t.o-occur in position 7 is to have a
Il)osxthns, then a head in position ;.
is 1/2*. Therefore, we have

o .
EX)=%V"1 =
) Z_{ 5 =2
We used the fact that Loy NT" =
In two different ways in Exercise 25 0
(5) Let us throw a die n — 1 times
the event that throw i results i;1

fi==yz- This has been proved
f Chapter 4.

andfor1 <i<n- 1, denote A4;
an even number. Finally, let A,




