MATH 113: DISCRETE STRUCTURES
SUNZI'S THEOREM

The Chinese mathematician Sunzi Suanjing considered the following problem in the 3-rd cen-
tury C.E. A general arrays his soldiers on the parade grounds. He first organizes them into
columns of 3, but there are only 2 soldiers in the final column. He then organizes them into
columns of 5, but there are only 3 soldiers in the final column. Finally, he organizes them into
columns of 7, and again there are only 2 soldiers in the final column. How many soldiers does the
general command?

Using the language of congruences, we can phrase the general’s observations as

x=2 (mod 3)
x=3 (modb)
=2 (mod7).

What (if any) integers x simultaneously satisfy these congruences?

Let us begin by solving the first two congruences, z = 2 (mod 3) = 3 (mod 5). By guess-
and-check, we quickly see that z = 8 is a solution. In fact, if z = 8 (mod 15), we solve both
congruences. Indeed, such x are equal to 15k + 8 for some k € Z, and 15 = 0 modulo both 3 and 5.

We now need to solve the congruences = = 8 (mod 15) = 2 (mod 7). A little thought reveals
that z = 23 works, and the same logic as before shows that = 23 (mod 105) gives all solutions
(because 105 = 15 - 7).

This brief exploration indicates the following theorem and its proof.

Theorem 1 (Sunzi’s Theorem [née Chinese Remainder Theorem]). Suppose N = ning---ny and
that the n; are pairwise relatively prime integers (so gcd(n;,nj) = 1 for i # j). Then for any integers
ai,...,ax the system of congruences

r=a; (modnp)

=ay (mod ng)

x =ar (mod ny)
has precisely one solution x = xo with 0 < xg < N and all solutions are of the form x = xo (mod N).

Proof. We proceed by induction on k. If £ = 1, then we may take x to be the remainder of a;
divided by n; and clearly all solutions are of the form x + nir =« + Nr,r € Z.

Fix s > 1 and suppose that all such systems with k£ = s terms have solutions as described. Now
consider a system of s + 1 congruences

r=a; (modny)

xr=ay (mod ngy)

xr=as (mod ny)
T =asy1 (mod mgyq).

where the n; are pairwise relatively prime. Let us first endeavor to solve the first two congruences.
Since n; and ng are relatively prime, there are integers m; and mgy such that 1 = min; + mans.
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Construct the number a; 2 = asmini + aymang. Since min; = 1 — mang, we have a; 2 = as(1 —
mang) + aymang = az + nz(aima — agms). Reducing mod ny, we get a; 2 = az (mod ng). If we
begin with the substitution mong = 1 — min;, we similarly get a1 2 = a1 (mod n1). Thus a; 2 is
a simultaneous solution of the first two congruences. We get all such solutions by considering
x = aj2 (mod ning). (The diligent reader should check this.) Thus we can solve the original s + 1
congruences by solving the system

r=ay2 (mod ning)

x=az (mod n3)

T =as41 (mod ngiq)

with only s congruences. Note that all the moduli are relatively prime, so we may invoke the
inductive hypothesis, and we are done. ]

This method of proof is constructive, in that it provides us with a method via which we can solve
our system of congruences. By repeated application of the extended Euclidean algorithm, we can
eliminate congruences one at a time until we get to a final congruence = a1 2 (mod N), where
ai 2.k is our solution.

In practice, this is not the fastest way to find a solution. (It requires ¥ — 1 applications of the
extended Euclidean algorithm.) Instead, suppose that n, is the largest of the moduli. There are
N/nj = ning - - - ni_; numbers z such that 0 < z < N and z = a;, (mod ng). If N/ny is relatively
small, we (or a computer) can simply check if each of these numbers satisfies all k£ congruences.

As an example, consider the system of congruences x = 0 (mod 2) =1 (mod 3) =2 (mod 5) =
3 (mod 7). The solutions to x =3 (mod 7) with0 <z <2-3-5-7=210arex = 3,10,17,...,206.
Eliminating odd x we are left with x = 10, 24, 38, 52, 66, 80, 94, 108, 122, 136, 150, 164, 178, 192, 206
as possible solutions. It is easy to see that only x = 52,122,192 are congruent to 2 (mod 5), and
then that only # = 52is 1 (mod 3). We conclude that the only solutions to this system of congru-
ences are integers = = 52 (mod 210).

There is a direct way to construct solutions as well. Let N; = N/n; fori = 1,..., k. Observe that
N; and n; are relatively prime, so we can find M; and m; such that

1= M;N; + m;n;.
The reader may check that

k
i=1

is a solution to the system of congruences, and thus all solutions are of the form
k
T = Z a;M;N; (mod N).
i=1
This recipe gives us a function
fiZ)/mZ X Z)noZ X - -+ X L/nyZ — Z/NZ

k
(a1,a2,. .-, ar) — Y _ aiM;N;
i=1
(We have engaged in the standard subterfuge of conflating integers and their congruence classes.)
There is another natural function g : Z/NZ — Z/mZ x --- x Z/n;Z sending x to the k-tuple

consisting of the reductions of x modulo each n;. The interested reader may check that these
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functions are inverse to each other, and thus these sets are in bijection. In fact, these assignment
also respect addition and thus are isomorphisms of abelian groups, a topic one can explore more fully
in Math 332!
Problem 1. Find all solutions to the system of congruences

r=2 (mod 11)

r=3 (mod 12)

r=4 (mod 13).

Problem 2. Does Sunzi’s theorem still hold if we drop the requirement that the n; are relatively
prime? Prove your assertion or provide a counterexample.



