LATEX SAMPLE

GOTTFRIED LEIBNIZ

Theorem 1. The derivative of a function f at c is given by

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

provided this limit exists.

Proof. By definition, we know that

(1)
$$f'(c) = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x}.$$

Let $x = c + \Delta x$. Then $x \to c$ as $\Delta x \to 0$. So, replacing $c + \Delta x$ by x and Δx by x - c in (1), we find that

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

as desired.

Date: November 14, 1716.