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; 2.17
(1+:1:1)(1+:r:2)...(1+a;.,)= z (Hm,). (2.17)
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Contemplate what this formula says (write it out for n = 1,2,3, say)

it holds. ' o .
andI: lgc;farh (t}o prove the inclusion—exclusion principle, let us denote

A=A UAU---U Ay, and let fi: A = {0,1} belt.hferc};mchn:j:g
function of the set A;, which means that {:(a) -ﬁ ] (ci k f'.(a))‘ end
fila) =0 otherwise. For every @ € A, we- aiv:av ] i;‘,

(don't we?), and using (2.17) with z; = — fila g
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By adding all these equalities toget.her-for alla € A, an
changing the summation order, we arrive at
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Now it suffices to note that the Tier g(a) i_s:[ thefc(l;a)r:;f.hlenn-sstuj4 .T‘n;:n
i t (.., A;, and therefore 3 e a LLies Jil@) = il Lier
tl::tic;flr:re s;'.can‘ Q;g (D: [Tico fila) is the empty produ;:lti, ;,[:;:c :a(];cisl)
Il;y deﬁnit{on, and 50 3,4 [lico fila) = T aeal = |Al.

means
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and this is exactly the inclusion—exclusion principle. An expert 1

i ion- i rinciple with mild con-
gebra can thus regard the inclusion exclusion princip s

tempt: a triviality, she might say.
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Bonferroni inequalities. Sometimes we can };ave tl;zlsdltgz;;onblvr e
i intersections up to m- .

know the sizes of all the In ’ o

Xs not know the sizes of intersections c;l'alr?ore; SZ:;(EETTTQ f:.called

i the union o sets .

annot calculate the size of : o

f'ionferroni inequalities tell us that if we leave ?ut all.ter.r:;s:3 v(.'21t;15) -

the right-hand side of the inclusion-exclusion Prmmp o - e

2;11 error that we make in this way in the ca.lcula.tmrf of the smfe g

un?on has the same sign as the first omitted term. Written as a 10 )

for every even g we have
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and for every odd ¢ we have
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This means, for instance, that if we didn’t know how many diligent
persons are simultanecusly in all the three clubs in Example 2.7.1, we
could still estimate that the total number of members in all the clubs
is at least 32. We do not prove the Bonferroni inequalities here.

Exercises

1. Explain why the formulas (2.15) and (2.16) express the same equality.

2. *Prove the Bonferroni inequalities. If you cannot handle the general
case try at least the casesg=1and ¢ = 2.

3. (Sieve of Eratosthenes) How many numbers are left in the set
{1,2,...,1000} after all multiples of 2, 3, 5, and 7 are crossed out?

4. How many numbers n < 100 are not divisible by a square of any integer
greater than 17

5. *How many orderings of the letters A, B, C, D, E, F, G, H, I, ], K,
L, M, N, O, P are there such that we cannot obtain any of the words

BAD, DEAF, APE by crossing out some letters? What if we also forbid
LEADING?

6. How many ways are there to arrange 4 Americans, 3 Russians, and 5

Chinese into a queue, in such a way that no nationality forms a single
consecutive block?

2.8 The hatcheck lady & co.

2.8.1 Problem (Hatcheck lady problem). Honorable gentle-
men, n in number, arrive at an assembly, all of them wearing hats,
and they deposit their hats in a cloak-room. Upon their departure,
the hatcheck lady, maybe quite absent-minded that day, maybe even
almost blind after many years of service in the poorly lit cloak-room,
issues one hat to each gentleman at random. What is the probability
than none of the gentlemen receives his own hat?

As stated, this is a toy problem, but mathematically it is quite re-
markable, and a few hundred years back, it occupied some of the best
mathematical minds of their times. First we reformulate the prob-
lem using permutations. If we number the gentlemen (our apologies)
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1,2,...,n, and their hats too, then the activity of the hatcheck lady
results in a random permutation 7 of the set {1,2,...,n}, where ()
is the number of the hat returned to the ith gentleman. The question
is, what is the probability of w(i) # i holding for all i € {1,2,... ,n}?
Call an index i with w(i) = i a fized point of the permutation . So
we ask: what is the probability that a randomly chosen permutation
has no fixed point? Each of the n! possible permutations is, according
to the description of the hatcheck lady’s method of working, equally
probable, and so if we denote by D(n) the number of permutations
with no fixed point® on an n-element set, the required probability
equals D{n)/n!.

Using the inclusion-exclusion principle, we derive a formula for
D(n). We will actually count the “bad” permutations, i.e. those
with at least one fixed point. Let Sp denote the set of all permu-
tations of {1,2,...,n}, and for i = 1,2,...,n, we define A; = {7 €
S,: m(i) = i}. The bad permutations are exactly those in the union
of all the A;.

Here we suggest that the reader contemplate the definition of the
sets A; carefully—it is a frequent source of misunderstandings (their
elements are permutations, not numbers).

In order to apply the inclusion-exclusion principle, we have to
express the size of the k-fold intersections of the sets A;. It is easy
to see that |4;| = (n—1)!, because if n(i) = 1 is fixed, we can choose
an arbitrary permutation of the remaining n — 1 numbers. Which
permutations lie in A; N Ap? Just those with both 1 and 2 as fixed
points (and the remaining numbers can be permuted arbitrarily), and
so |A;NAz| = (n—2)!. More generally, for arbitrary iy < iz <--- < ik
we have |4y N A, N--NA,|=(n— k)!, and substituting this into
the inclusion-exclusion formula yields

n n ]
AL U U A = 3 (=1 (’;’) (n— )= Y (D
k=1 k=1 :
We recall that we have computed the number of bad permutations
(with at least one fixed point), and so0

n  nl s
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D(n)=n!—|A1U"'UAn|="'!_ TRET

which can still be rewritten as

6Such permutations are sometimes called derangements.
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As is taught in calculus, the series in parentheses converges to ¢!
for n = oo (where e is the Euler number), and it does so ver

fast. Sc? ‘we-have the approximate relation D(n) =~ n!/e, and th‘z
pf?ba.blllty in the hatcheck lady problem converges to the, constant
e~ = 0.36787.... This is what also makes the problem remarkable:
the answer almost doesn’t depend on the number of gentlemen! .

'I;:)e Euler function @. A function denoted usually by  and named
after Leonhard Euler plays an important role in number theory. For a

natugal number n, the value of p(r) is defined as the number of natural
numbers m < n that are relatively prime to n; formally

o(n) = |{m €{1,2,...,n}: ged(n,m) = 1}.

Here ged(n, m) denotes the greatest common divisor of n and m; that i
the largest _natura] number that divides both n and m. As an éxam 115 ,
of f).pphcatlon of the inclusion-exclusion principle, we find a formllj)le
whlch. allc-)ws us to calculate @(n) quickly provided that we kno t.ha
Fact'cIJ‘Il:llzatlon of n into prime factors. ne

e simplest case i =pi i i
relatively prime to 7 and 50 g cp 1 T <P
The nfzxt ste;.) towards the general solution is the case when n = p°®
[c: € N) is a prime power. Then the numbers not relatively prime to
p* are multiples of p, i.e. p,2p,3p,...,p"'p, and there are p°~! such
multiples not exceeding p® (in general, if d is an any divisor of some
Eumber n, then the number of multiples of d not exceeding n is n/d)
ence, there are (p®) = p® — p*~! = p*(1 — 1/p) remaining numb ‘
that are relatively prime to p®. 8 e

An arbitrary n can be written in the form

— a2
n=py'py’...p8r,

r.vhere P, P2,...,pr are distinct primes and o; € N. The “bad” m < n
ie. those not contributing to (n), are all multiples of some of_th(;
primes p;. ‘Let us denote by A; = {m € {1,2,...,n}: ps/m} the set
?f all .multlples of p;. We have ¢(n) = n—|A U 43 U . U Ay TI?
!m:lusmr{—exclusion principle commands that we find the sizesrt':lf thz
I:;gs;siﬁtlons of the Sfit.:.i A, For example, the intersection 4; N Ay con-
mu]tiple: g?mbers divisible by both p; and p,, which are exactly the
e P1p2, and hence [A; N Az| = n/(p1p2). The same argument
|A4;, N A, N---NA,|= —n—.
PiPin - - Piy,
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Let us look at the particular casesr =2and 7 =3 first. Forn = py'ps

we have
p(n) =n— AU Ao| =n = |Ai] = |Aa2] + |41 N Ao

1 1
n n n IRAYSEAY
" o P2 Dz il f L0
Similarly, for n = p{'p32ps°® we get

p(n)=n-— = TP pa mpr Pp3 PP3 Pilps

co(-2) (-2)(-3)

This may raise a suspicion concerning the general formula.
0y 07 o
2.8.2 Theorem. Forn = p{'p3?...per, we have

w(n)=n(1—51;) (1—%)...(1—%). (2.22)

Proof. For an arbitrary r, the inclusion-exclusion principle (we use,
to our advantage, the short formula (2.16)) gives

_ n (—I)III
= ¥ (Wi

=n- = I
B#IC {1,207}

icl bi 12{1,2,-.,7} niE!pi

i is fri i ls the right-hand side of
We claim that this frightening formula equa | :
E(i (2.22). This follows from the formula {2.17) for expanding the prod

ituti c==1/p;,1=1,2,...,1.
uct (14 )(1-+z2)(1+23) . .. by substituting 1/p;i, 1 y "

Exercises
1. There are n married couples attending a d?.nce. How many w?g;f ;.:i
there to form n pairs for dancing if no wife should dance wit
husband? \
2. (a) Determine the number of permutations with exactly one fixe
point. .
(b) Count the permutations with exactly k fixed points.

i with the following inductive “proof” t';hat D(n)

> (th—a’tl)’!S l';wrr o;li;n > 27 Can you find a false step in it? Fon: n =

2, the formula holds, so assume n > 3. Let 7 be a pen:nutatlon 2

{1,2,...,n — 1} with no fixed point. We want to extend it to a pber
mu.‘ltation x of {1,2,...,n} with no fixed point. We choose a num
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i€ {1,2,...,n -1}, and we define 7'(n) = (), (i) =n,and 7'(j) =
7(7) for j # ¢, n. This defines a permutation of {1,2,...,n}, and it is easy
to check that it has no fixed point. For each of the Din-1)=(n-2)
possible choices of 7, the index ¢ can be choseninn — 1 ways, Therefore,
Diny=n-2)!-(n-1)=(n-1).

. *Prove the equation

D(n)=nl=nD(n-1) - (;)D(n—2)----- (nil)ou) -1

5. (a) *Prove the recurrent formula D(n) = (n— [D(n~1)+ D(n - 2)].

Prove the formula (2.21) for D(n) by induction.

(b) *Calculate the formula for D(n) directly from the relation derived
in (a). Use an auxiliary sequence given by a, = D(n)—nD(n-1).

. How many permutations of the numbers 1,2, ... , 10 exist that map no

even number to itself?

. (Number of mappings onto) Now is the time to calculate the number

of mappings of an n-element set onto an m-element set (note that we
have avoided it so far). Calculate them

(a) form=2
{b) for m = 3.
(c) *Write a formula for a general m; check the result for m = n = 10

(what is the result for n = m?). Warning: The resulting formula is a
sum, not a “nice” formula like a binomial coefficient.

(d) *Show, preferably without using part (c), that the number of map-
pings onto an m-element set is divisible by m!.

. (a) *How many ways are there to divide n people into k groups (or:

how many equivalences with & classes are there on an n-element set)?
Try solving this problem for k =2,3and k= n — 1,n — 2 first. For a
general k, the answer is a sum.

(b) What is the total number of equivalences on an n-element set?
(Here the result is a double sum.)

{c) “If we denote the result of (b) by B, (the nth Bell number), prove
the following (surprising) formula:

B, =

[ )

o0 .

>
—_"'.

i=0 1.

- "Prove the formula (2.22) for the Euler function in a different way.

Suppose it holds for n = p® (a prime power). Prove the following
auziliary cleim: if m, n are relatively prime, then w(mn) = p(m)p(n).



