
MATH 113: DISCRETE STRUCTURES
FUNCTIONS

1. FUNCTIONS AS ASSIGNMENTS

In an earlier handout, we defined a function f : A → B (with domain the set A and codomain
the set B) to be a subset f ⊆ A×B such that for every a ∈ A there is a unique pair (a, b) ∈ f . This
is the graph interpretation of functions: think of A as the “horizontal axis” and B as the “vertical
axis.” (If A and B are (subsets of) R, you can literally do this!) The function condition is then the
“vertical line test” — each “vertical line” through some a ∈ A hits exactly one graphed point (a, b).

It is typical to think of functions as assignments rather than as particular subsets of a Cartesian
product. When (a, b) ∈ f : A → B, we say that b = f(a) and think of f “sending” a to b. The
function condition then says that each a ∈ A gets sent to precisely one b ∈ B.1

Example 1.1. Consider the set f = {(1, 3), (2, 3), (3, 4)} ⊆ {1, 2, 3} × {1, 2, 3, 4}. This is a function
for which f(1) = 3, f(2) = 3, and f(3) = 4.

Notation. We will sometimes write f : a 7→ b when f(a) = b and read this statement as “f maps a
to b.” It is important that “7→” is not the same as “→”: f : A→ B tells us that f is a function with
domain A and codomain B, while f : a 7→ b says that f(a) = b. For the function from Example
1.1, we could write f : 1 7→ 3, 2 7→ 3, 3 7→ 4.

Example 1.2. In calculus, you may have considered a function R→ R given by a formula such as
f(x) = x3 + sinx. This is still a perfectly reasonably function because each x ∈ R is sent to one
f(x) ∈ R (namely, x3 + sinx). As a graph, this function is {(x, x3 + sinx) : x ∈ R}.
Example 1.3. Not all functions have reasonable formulas. For instance, there is a function g : R→
R which takes x to x if the first nonzero digit of x is 1 and otherwise takes x to 0. Weird, but still a
function.2

Example 1.4. Here’s an interesting way to use a function: Given a set X and subset A ⊆ X ,
let’s build a function which specifies the points of A. We define the indicator function for A to be
χA : X → {0, 1} given by

χA(x) =

{
1 if x ∈ A,
0 if x /∈ A.

A couple of comments: first, χ is the Greek letter “chi.” Second, the formula above is an example
of a piecewise definition: we partition the domain into disjoint subsets whose union is all of X (in
this case, A and X r A), and then give a formula or rule describing what the function does to
elements in each subset.

Note that we can reconstruct A from χA as all x ∈ A such that χA(x) = 1, i.e.,

A = {x ∈ X : χA(x) = 1}.
You’ve actually seen this trick before! We were secretly using indicator functions to enumerate
subsets, producing a one-to-one correspondence between subsets of X and functions X → {0, 1}.

1Note that for a given b ∈ B, more than one a can go to b. The point here is that (1) f(a) takes some value in B, and
(2) it only takes one, instead of multiple, values in B.

2Worse yet, “most” functions between infinite sets are not describable by any written rule whatsoever, but we will
not pursue this perversity further.
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2. COMPOSITION

Let’s now explore how functions interact with each other via composition.

Definition 2.1. Suppose f : A → B and g : B → C are functions and the codomain of f equals
the domain of g. Then we define the composite of g with f to be the function g ◦ f : A → C by the
equation (g ◦ f)(a) = g(f(a)).

The composite g ◦ f “does f first” and then “does g.” We can express this graphically with a
picture called a commutative diagram:

B
g

  
A

f
??

g◦f
// C.

Here the arrows go from domain to codomain and are labelled by the corresponding function. If
we start with a ∈ A, then the arrow labelled f takes a to f(a). Continuing this path, the arrow
labelled g takes f(a) to g(f(a)). Meanwhile, the arrow labelled g◦f takes a to g(f(a)) by definition.
Since both paths do the same thing to every a ∈ A, we say that it “commutes.”

The exact shape of a commutative diagram doesn’t matter. If someone told us that the diagram

Y
K // Z

X

J

OO

L

>>

commutes, we would know that K(J(x)) = L(x) for each x ∈ X ; in other words, L = K ◦ J when
that diagram commutes.

We can compose more than two functions as well, as long as domains and codomains match
up properly. For instance, h ◦ g ◦ f : A → D makes sense as long as f : A → B, g : B → C, and
h : C → D for some sets A, B, C, and D; we have (h ◦ g ◦ f)(a) = h(g(f(a))). We leave it as an
exercise to the reader to (a) check that h◦g◦f = h◦(g◦f) = (h◦g)◦f , and (b) draw a commutative
diagram describing this triple composite. Property (a) has a name: composition is associative.

Every set A supports a special function idA : A → A, called the identity function on A, which
interacts in a special way with composition. This function simply takes a to a for each a ∈ A, i.e.,
idA : a 7→ a or idA(a) = a. If f : A → B is a function, let’s consider the composite f ◦ idA. Well,
(f ◦ idA)(a) = f(idA(a)) = f(a) for every a ∈ A, so f ◦ idA = f . Similarly, idB ◦f = f . (Note
that we had to change idA to idB so that domains and codomains would match up!) We see then
that composition with the identity function does nothing to the other function. This distinguishes
identity functions amongst all functions with the same domain and codomain.

3. SPECIAL TYPES OF FUNCTIONS

We now explore functions with special properties, namely injections, surjections, and bijections.

3.1. Injections. An injection is a function which does not hit the same value twice. We formalize
this idea in the following definition.

Definition 3.1. A function f : A → B is injective (or is an injection) if f(x) = f(y) (for x, y ∈ A) if
and only if x = y.

Meditate on this definition for a while if it seems funny. The point is that f does not duplicate
values in the codomain, so an equality between values (f(x) = f(y)) is only possible when x = y.
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Let’s briefly return to our graph interpretation of functions. An injection hits each value in
the codomain at most once. This is also referred to as the horizontal line test: when we draw a
horizontal line through any b ∈ B, we hit at most one point of the form (a, b) in the graph.

You may have learned in middle school that functions passing the horizontal line test have
inverses. This fact remains true in the current context, although we must be careful with the
domain of our inverse function, requiring the following definition.

Definition 3.2. The image of a function f : A→ B is the set

im(f) = {b ∈ B : there exists a ∈ A such that f(a) = b}.

In other words, the image of f consists of all the elements of B that are “hit” by the function.
For instance, the image of the function f : {1, 2, 3} → {1, 2, 3, 4} from Example 1.1 is {3, 4}. The
image of the function from Example 1.3 is

{x ∈ R : the first nonzero digit of x is 1} ∪ {0}.

When a function f : A → B is injective, it has an inverse function f−1 : im(f) → A; this is
the unique function satisfying the equalities f(f−1(b)) = b for each b ∈ im(f) and f−1(f(a)) = a
for each a ∈ A. It is tempting then to write that f ◦ f−1 = idim(f) and f−1 ◦ f = idA, but we
should recognize that there is a slight mismatch between domains and codomains. If we replace
f : A → B with f̃ : A → im(f) taking the same values (f̃(a) = f(a) for all a ∈ A), then its
completely legitimate to write f̃ ◦ f−1 = idim(f) and f−1 ◦ f̃ = idA.

3.2. Surjections. Given the terminology we’ve already introduced, surjections are easy to define.

Definition 3.3. A function f : A→ B is surjective (or is a surjection) if im(f) = B.

In other words, surjections hit everything in their codomain. Of course, when we define a func-
tion, we have some choice regarding the codomain. For instance, we could consider the assign-
ment on real numbers x 7→ x2 to have codomain R or codomain [0,∞) = {x ∈ R : x ≥ 0}. In the
first instance, the function is not surjective, but in the latter case it is (because every nonnegative
real number has a square root [in fact, two square roots]).

Example 3.4. Suppose A ( X is a nonempty proper subset of X . Then the indicator function
χA : X → {0, 1} is surjective. (Why? What if A = ∅ or X?)

3.3. Bijections. Finally, we come to bijections, also called one-to-one correspondences.

Definition 3.5. A function is bijective (or is a bijection) if it is both injective and surjective.

Suppose f : A→ B is bijective. Then it is injective with im(f) = B, so it has an inverse function
of the form f−1 : B → A satisfying f ◦ f−1 = idB and f−1 ◦ f = idA. (We don’t need to replace f
with f̃ because im(f) is all of B.) In fact, a function has such an inverse if and only if it is bijective.

Theorem 3.6. A function f : A→ B is bijective if and only if there exists a function g : B → A (called a
[two-sided] inverse of f ) such that f ◦ g = idB and g ◦ f = idA.

Proof. We have already seen that if f is bijective, then such a g exists. Suppose now that f : A→ B
is a function and there exists g : B → A such that f ◦ g = idB and g ◦ f = idA. We need aim to
show that f is bijective, and will first show that it is injective. Suppose that there are x, y ∈ A such
that f(x) = f(y). Applying g to this equality, we get g(f(x)) = g(f(y)), and since g ◦ f = idA, this
becomes x = y. Hence f is injective.

We now show that f is surjective. Given b ∈ B, let a = g(b). Then f(a) = f(g(b)) = b, so f is
surjective. Since f is injective and surjective, it is in fact a bijection, as desired. �
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Bijections are incredibly useful in combinatorics. Every combinatorial problem can be reframed
as trying to determine the cardinality of a set. The following theorem tells us that bijections pre-
serve cardinality, so a good way to “count” is to produce a bijection between the set we would like
to count, and a set with a known number of elements.

Theorem 3.7. There exists a bijection f : A→ B if and only if |A| = |B|.

Proof. Just kidding! This is actually the definition of cardinality. A cardinal number is actually an
equivalence class of sets up to bijection.

Nonetheless, I will still try to explain why this makes sense in the case where both sets are
finite. Suppose that |A| = n = |B|. By counting the n elements of A and B, we produce bijections
a : {1, 2, . . . , n} → A and b : {1, 2, . . . , n} → B. You should check that f = b ◦ a−1 is a bijection
A→ B.

Now suppose that A is finite of cardinality n and there exists a bijection f : A → B. Counting
A again produces a bijection a : {1, 2, . . . , n} → A. Convince yourself that f ◦ a : {1, 2, . . . , n} → B
counts B, so |B| = n as well. �
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