MATH 113: DISCRETE STRUCTURES
MONDAY WEEK 4 SUPPLEMENT

Let’s first show that the identity

1'n+2'(”_1)"‘3'(n—2)+"'—|—(n—1)-2+n.1:<n§2)

holds for integers n > 2.

Proof 1 (double counting). Observe that the right-hand side gives the number of 3-subsets of n + 2 =
{1,2,...,n + 2}. We show that the sum on the left-hand side counts the same objects.

Given a 3-subset A of n + 2, write it as {a, b, ¢} where a < b < ¢ by ordering its elements. For
a given integer b between 2 and n + 1, we count the number of 3-subsets with b as their middle
element. The first element, a, can be any of the b — 1 elements of {1,2,...,b — 1}, while the final
element, ¢, can be any of the n+2—b elements of {b+1,b+2,...,n+2}. (Stop and think for a while
if it is not immediately clear that there are n+ 2 — b such elements.) Thus there are (b—1)(n+2—0b)
3-subsets of n + 2 with b as middle element. Letting b range from 2 (the smallest possible middle
element) to n + 1 (the largest possible middle element), we count a total of

l'n+2-(n—1)+---4+n—-1)-24n-1

3-subsets of n + 2. (Note that we have not double-counted anything because subsets with distinct
middle elements are distinct.) We conclude that

3

as desired. O

1-n+2-(n—1)+3-(n—2)+---—|—(n—1)-2—|—n'1:<n+2>

Proof 2 (induction). We first check the base case, n = 2. For this n, the left-hand sideis 1-2+2-1 =4
and the right-hand side is (3) = 4, so the identity holds.
Now assume that for some n > 2 we have

Ln+2-(n=1)+3-n=2)+---+(n-1)-2+n-1= (n;2)

Replacing n with n + 1 on the left-hand side we get
l-n+1)+2-n+1-1)+3-n+1-2)+---+(n+1-1)-24(n+1)-1

Here each term is of the form & - (n + 2 — k) where k ranges from 1 to n + 1. Note that we can
rewrite k- (n+2—k)ask-(1+(n+1—-k)) =k+k-(n+1—k). Adding these terms up (first the
k summand, then the k- (n + 1 — k) summand), we get

14+24+--+n+n+1)+1-n+2-n—-1D)+3-n—-2)+--+(n—-1)-24+n-1).

By the induction hypothesis, the second term is just (";2) By the combinatorial argument we
gave in class, the first term is (”;2) We can thus conclude that

Finally, by Pascal’s identity, the final sum is ("3?) = (")), as desired. By mathematical induc-
tion, we now know that the identity holds for all n > 2. O
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Let’'s now show thatforl1 < k <n,
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Before getting into the proof, note that if we divide both sides by k* (a positive number), we get
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for 1 < k < n, which, if nothing else, is an orthographically attractive inequality. (Challenge: Run

some computer experiments to see how effective the bound (n/k)* is on (%)- Are they close or far
apart as n gets large?)

which is equivalent to

Proof. Our strategy is as follows: given 1 < k < n, we construct sets X and Y such that | X| = (}) k"
and Y| = n*. We will then exhibit a surjection f : X — Y. This guarantees the inequality
|X| > |V, which is equivalent to n* < (})&".

Fix integers k and n with 1 < k < n. We take Y to be the collection of words inn = {1,...,n}
of length k. In other words,

Y ={(a1,a9,...,ax) | a1,...,ar € n}.
Since there are n choices for each letter in each length k& word, we have |Y| = n*.
Now let X be the collection of pairs (A, (a1, ..., a;)) where Aisa k-subsetof nand a1, ...,a; €
A. There are (Z) ways to select the first term, A, and then Kk possible length k£ words (a1, ..., ax)

constructed from elements of A. Thus | X| = (})kF.
Finally, we construct a surjective function f : X — Y by declaring that

f((A;(ar, - s ar))) = (a1, - ag).
This is well-defined for any (A4, (a1,...,a;)) € X as the word (ay,...,ax) is constructed from a
subset of n. Moreover, for each word (ay, ..., ax) € Y, we can construct a pair (4, (a1, ...,a;)) € X
such that f((4, (a1,...,ar))) = (a1,...,a;) by choosing some A which contains {ay, ..., ax}. This
means that f is surjective, so we have finished our proof! 0



