
MATH 113: DISCRETE STRUCTURES
MONDAY WEEK 4 SUPPLEMENT

Let’s first show that the identity

1 · n+ 2 · (n− 1) + 3 · (n− 2) + · · ·+ (n− 1) · 2 + n · 1 =

(
n+ 2

3

)
holds for integers n ≥ 2.

Proof 1 (double counting). Observe that the right-hand side gives the number of 3-subsets of n+ 2 =
{1, 2, . . . , n+ 2}. We show that the sum on the left-hand side counts the same objects.

Given a 3-subset A of n+ 2, write it as {a, b, c} where a < b < c by ordering its elements. For
a given integer b between 2 and n + 1, we count the number of 3-subsets with b as their middle
element. The first element, a, can be any of the b − 1 elements of {1, 2, . . . , b − 1}, while the final
element, c, can be any of the n+2−b elements of {b+1, b+2, . . . , n+2}. (Stop and think for a while
if it is not immediately clear that there are n+2−b such elements.) Thus there are (b−1)(n+2−b)
3-subsets of n+ 2 with b as middle element. Letting b range from 2 (the smallest possible middle
element) to n+ 1 (the largest possible middle element), we count a total of

1 · n+ 2 · (n− 1) + · · ·+ (n− 1) · 2 + n · 1
3-subsets of n+ 2. (Note that we have not double-counted anything because subsets with distinct
middle elements are distinct.) We conclude that

1 · n+ 2 · (n− 1) + 3 · (n− 2) + · · ·+ (n− 1) · 2 + n · 1 =

(
n+ 2

3

)
as desired. �

Proof 2 (induction). We first check the base case, n = 2. For this n, the left-hand side is 1 ·2+2 ·1 = 4

and the right-hand side is
(
4
3

)
= 4, so the identity holds.

Now assume that for some n ≥ 2 we have

1 · n+ 2 · (n− 1) + 3 · (n− 2) + · · ·+ (n− 1) · 2 + n · 1 =

(
n+ 2

3

)
.

Replacing n with n+ 1 on the left-hand side we get

1 · (n+ 1) + 2 · (n+ 1− 1) + 3 · (n+ 1− 2) + · · ·+ (n+ 1− 1) · 2 + (n+ 1) · 1
Here each term is of the form k · (n + 2 − k) where k ranges from 1 to n + 1. Note that we can
rewrite k · (n+ 2− k) as k · (1 + (n+ 1− k)) = k+ k · (n+ 1− k). Adding these terms up (first the
k summand, then the k · (n+ 1− k) summand), we get

(1 + 2 + · · ·+ n+ (n+ 1)) + (1 · n+ 2 · (n− 1) + 3 · (n− 2) + · · ·+ (n− 1) · 2 + n · 1).

By the induction hypothesis, the second term is just
(
n+2
3

)
. By the combinatorial argument we

gave in class, the first term is
(
n+2
2

)
. We can thus conclude that

1 · (n+1)+ 2 · (n+1− 1)+ 3 · (n+1− 2)+ · · ·+ (n+1− 1) · 2+ (n+1) · 1 =

(
n+ 2

2

)
+

(
n+ 2

3

)
.

Finally, by Pascal’s identity, the final sum is
(
n+3
3

)
=

(
(n+1)+2

3

)
, as desired. By mathematical induc-

tion, we now know that the identity holds for all n ≥ 2. �
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Let’s now show that for 1 ≤ k ≤ n,

nk ≤
(
n

k

)
kk.

Before getting into the proof, note that if we divide both sides by kk (a positive number), we get

nk

kk
≤

(
n

k

)
,

which is equivalent to (n
k

)k
≤

(
n

k

)
for 1 ≤ k ≤ n, which, if nothing else, is an orthographically attractive inequality. (Challenge: Run
some computer experiments to see how effective the bound (n/k)k is on

(
n
k

)
. Are they close or far

apart as n gets large?)

Proof. Our strategy is as follows: given 1 ≤ k ≤ n, we construct sets X and Y such that |X| =
(
n
k

)
kk

and |Y | = nk. We will then exhibit a surjection f : X → Y . This guarantees the inequality
|X| ≥ |Y |, which is equivalent to nk ≤

(
n
k

)
kk.

Fix integers k and n with 1 ≤ k ≤ n. We take Y to be the collection of words in n = {1, . . . , n}
of length k. In other words,

Y = {(a1, a2, . . . , ak) | a1, . . . , ak ∈ n}.
Since there are n choices for each letter in each length k word, we have |Y | = nk.

Now let X be the collection of pairs (A, (a1, . . . , ak)) where A is a k-subset of n and a1, . . . , ak ∈
A. There are

(
n
k

)
ways to select the first term, A, and then kk possible length k words (a1, . . . , ak)

constructed from elements of A. Thus |X| =
(
n
k

)
kk.

Finally, we construct a surjective function f : X → Y by declaring that

f((A, (a1, . . . , ak))) = (a1, . . . , ak).

This is well-defined for any (A, (a1, . . . , ak)) ∈ X as the word (a1, . . . , ak) is constructed from a
subset of n. Moreover, for each word (a1, . . . , ak) ∈ Y , we can construct a pair (A, (a1, . . . , ak)) ∈ X
such that f((A, (a1, . . . , ak))) = (a1, . . . , ak) by choosing some A which contains {a1, . . . , ak}. This
means that f is surjective, so we have finished our proof! �
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