MATH 113: DISCRETE STRUCTURES HOMEWORK FOR FRIDAY WEEK 9

Problem 1 (Indicator variables). Given an event $A \subseteq S$ and $s \in S$, let $I_A(s) = 1$ if $s \in A$, and let $I_A(s) = 0$ if $s \notin A$. This defines a random variable I_A called the *indicator variable* of A. Prove that $E(I_A) = P(A)$.

Problem 2 (The number of surviving rabbits). There are n hunters and n rabbits in a field. Each hunter aims their gun at exactly one rabbit, and then all of the hunters fire simultaneously. Alas – every hunter is a perfect shot and any rabbit which was aimed at dies. In this problem, you will determine how many rabbits are expected to survive.

- (a) Translate this problem in the language of functions.
- (b) For $1 \le i, j \le n$, what is the probability that the *j*-th hunter shoots the *i*-th rabbit?
- (c) For $1 \le i \le n$, let A_i be the event that the *i*-th rabbit survives. What is $P(A_i)$?
- (d) Let *X* be the total number of surviving rabbits. Use indicator variables to express *X* as a sum of random variables and determine E(X).
- (e) Use a calculator or computer to approximate E(X)/n, the expected fraction of rabbits to survive, when *n* is very large. *Bonus*: Determine the exact value of $\lim_{n\to\infty} E(X)/n$.