MATH 113: DISCRETE STRUCTURES WEDNESDAY WEEK 6 HANDOUT

Problem 1. How many derangements π of \underline{n} have $\pi(1) = 2$ and $\pi(2) = 1$? Fix some $k, 2 \le k \le n$; how many derangements π of \underline{n} have $\pi(1) = k$ and $\pi(k) = 1$?

Problem 2. How many derangements π of \underline{n} have $\pi(1) = 2$ and $\pi(2) \neq 1$? Fix some $k, 2 \leq k \leq n$; how many derangements π of \underline{n} have $\pi(1) = k$ and $\pi(k) \neq 1$?

Problem 3. Let D(n) be the number of derangements of \underline{n} . Use your answers to Problems 1 and 2 to find a formula for D(n) in terms of D(n-2) and D(n-1). Determine D(1) and D(2) by hand and then use your formula to determine D(n) for n = 3, 4, 5, and 6; check that your answers match with the closed formula given by the inclusion-exclusion principle.