MATH 113: DISCRETE STRUCTURES MONDAY WEEK 13 HANDOUT

The book says that integers a and b are congruent modulo another integer m (denoted $a \equiv b \pmod{m}$) if a and b have the same remainder upon division by m. In your homework, you will prove that this is equivalent to $m \mid a - b$.

Question 1. When is $a \equiv b \pmod{2}$, $a \equiv b \pmod{1}$, $a \equiv b \pmod{0}$?

Congruence is an *equivalence relation* on \mathbb{Z} , meaning that it is reflexive ($a \equiv a$), symmetric (if $a \equiv b$ then $b \equiv a$), and transitive (if $a \equiv b$ and $b \equiv c$, then $a \equiv c$). An equivalence relation \sim on a set *S* is a relation between elements of *S* which satisfies the same three properties. Whenever we have an equivalence relation, we may consider *equivalence classes*, subsets of *S* consisting of all elements equivalent (\sim) to each other. For instance, if $s \in S$, then

$$\widetilde{s} = \{ r \in S \mid r \sim s \}$$

is the equivalence class of *s*.

Problem 2. Prove that $\tilde{s} = \tilde{t}$ if and only if s = t. Conclude that the equivalence classes of ~ partition *S* into disjoint subsets whose union is all of *S*.

We write S/ \sim for the set of equivalence classes of \sim , *i.e.*, $S/ \sim = \{\tilde{s} \mid s \in S\}$. Note that S/ \sim is a set of subsets of S.

Problem 3. Suppose that $P = \{A_1, A_2, ..., A_n\}$ is a set of subsets $A_i \subseteq S$ which partition S. Define $s \approx t$ if and only if $s, t \in A_i$ for some i. Prove that \approx is an equivalence relation on S and that $P = S/\approx$. Does anything go wrong if P is a partition of S into infinitely many subsets?

When considering the congruence modulo m equivalence relation on \mathbb{Z} , we write \overline{a} for the equivalence class of a. (We elide m from the notation; it should be clear from context.) We call \overline{a} the congruence class of a modulo m. We write $\mathbb{Z}/m\mathbb{Z} = \mathbb{Z}/\equiv$ for the set of congruence classes modulo m.

Problem 4. What is $|\overline{a}|$? $|\mathbb{Z}/m\mathbb{Z}|$?

Question 5. How did you use equivalence relations in combinatorics? What about the Knights of the Round Table problem?

- *Problem* 6. (a) Suppose that $f : X \to Y$ is a surjective function. For $y \in Y$, let $f^{-1}y = \{x \in X \mid f(x) = y\}$; this is the set of solutions to the equation f(x) = y and is called the *fiber* of f over y. Prove that $\{f^{-1}y \mid y \in Y\}$ is a partition of X and thus defines an equivalence relation \sim_f on X where $x \sim_f x'$ if and only if f(x) = f(x').
- (b) Find a function with domain \mathbb{Z} such that the construction from part (a) produces congruence modulo *m*.

Problem 7. For the following two functions, say as much as you can about the construction from 5(a).

(a) Let $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ denote the unit circle. Consider the function $f : \mathbb{R} \to S^1$ such that

$$f(x) = (\cos(2\pi x), \sin(2\pi x)).$$

(b) Consider the function $g: \mathbb{R}^2 \to S^1 \times S^1$ such that

 $g(x,y) = ((\cos(2\pi x), \sin(2\pi x)), (\cos(2\pi y), \sin(2\pi y))).$