
MATH 113: DISCRETE STRUCTURES
FRIDAY WEEK 13 HANDOUT

Suppose n = pa11 · · · p
ak
k for positive integers ai and distinct primes pi. Recall that φ(n) is the

number of positive integers smaller than n and relatively prime to n. We claim that

φ(n) = n(1− 1/p1)(1− 1/p2) · · · (1− 1/pk).

To prove this, we count the number of positive integers which are at most n and are not relatively
prime to n. This is the case if and only if one of the pi divides n. Of course, there are n/pi positive
integers≤ n and divisible by pi, so it is tempting to guess that φ(n) = n−(n/p1+n/p2+· · ·+n/pk),
but inclusion-exclusion tells us we need to be more careful with numbers which are divisible by
multiple primes. The correct formula is

φ(n) = n−
∑

1≤i≤k

n

pi
+

∑
1≤i1<i2≤k

n

pi1pi2
−

∑
1≤i1<i2<i3≤k

n

pi1pi2pi3
+ · · · ± n

pi1pi2 · · · pik

where the signs alternate and the final sign is + if k is even and − if k is odd. Factoring out an n
and thinking deeply about the distributive law, we see that this is the same as

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pk

)
= n

k∏
i=1

(
1− 1

pi

)
.

What a remarkable formula! For instance, if n = 6160 = 23 · 52 · 7 · 11, then

φ(6160) = 6160(1− 1/2)(1− 1/3)(1− 1/5)(1− 1/7)(1− 1/11) = 1280.

Also note that there is a probabilistic interpretation of this formula. The probability that an integer
between 1 and n is relatively prime to n is

φ(n)

n
=

k∏
i=1

(
1− 1

pi

)
.

Fascinatingly, the probability only depends on the primes dividing n, and it suggests an alternate
proof of our formula.

Problem 1. Let n be our sample space with uniform distribution. Define the event NDi to be the
set of r ∈ n such that pi - r.

(a) What is P (NDi)?
(b) Let RP be the collection of r ∈ n which are relatively prime to n. Check that RP = ND1 ∩

ND2 ∩ · · · ∩NDk.
(c) Argue that the events NDi are independent and thus P (RP ) = P (ND1) · · ·P (NDk). Note

that this is equivalent to the above formula for φ(n).

Here’s another application of probability theory to number theory, due to Erdős (1965). Call
S ⊆ Z sum free if for all a, b, c ∈ S, a+ b 6= c.

Theorem 2. Let A be a finite set of nonzero integers. Then there exists S ⊆ A which is sum free with size
|S| > |A|/3.
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Proof. Choose a prime number p = 3k + 2, where k is large enough that A ⊆ [−p/3, p/3] r {0}.
Reduce everything in A modulo p to produce A = {a | a ∈ A} ⊆ Z/pZ. Because of how we
chose k, |A| = |A|. Observe (i.e. check!) that a subset S of A will be sum free if and only if the
corresponding S ⊆ A is sum free.

Now randomly choose x ∈ Z/pZ× uniformly, and form the set

Sx = A ∩ (x · [k + 1, 2k + 1]) = {a ∈ A | x−1a ∈ {k + 1, . . . , 2k + 1}.
Since [k + 1, 2k + 1] is sum free in Z/pZ, we see that x · [k + 1, 2k + 1] is too, and thus Sx is sum
free. It now suffices to show that Sx has cardinality greater than |A|/3 with positive probability.
Viewing |Sx| as a random variable on Z/pZ×, it suffices to prove that E(|Sx|) > |A|/3.

Via the method of indicator variables, we may compute

E(|Sx|) =
∑
a∈A

P (a ∈ Sx) =
∑
a∈A

P (x−1a ∈ [k + 1, 2k + 1]).

Since a is invertible in Z/pZ, multiplication by a is a bijection Z/pZ× → Z/pZ×. It follows that
x−1a is uniformly randomly distributed in Z/pZ×. Since |[k + 1, 2k + 1]| > p−1

3 , we conclude that
P (x−1a ∈ [k + 1, 2k + 1]) > 1/3 for all a ∈ A. Thus E(|Sx|) > |A|/3, as desired. �
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