
MATH 113: DISCRETE STRUCTURES
SUNZI’S THEOREM

The Chinese mathematician Sunzi Suanjing considered the following problem in the 3-rd cen-
tury C.E. A general arrays his soldiers on the parade grounds. He first organizes them into
columns of 3, but there are only 2 soldiers in the final column. He then organizes them into
columns of 5, but there are only 3 soldiers in the final column. Finally, he organizes them into
columns of 7, and again there are only 2 soldiers in the final column. How many soldiers does the
general command?

Using the language of congruences, we can phrase the general’s observations as

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7).

What (if any) integers x simultaneously satisfy these congruences?
Let us begin by solving the first two congruences, x ≡ 2 (mod 3) ≡ 3 (mod 5). By guess-

and-check, we quickly see that x = 8 is a solution. In fact, if x ≡ 8 (mod 15), we solve both
congruences. Indeed, such x are equal to 15k+8 for some k ∈ Z, and 15 ≡ 0 modulo both 3 and 5.

We now need to solve the congruences x ≡ 8 (mod 15) ≡ 2 (mod 7). A little thought reveals
that x = 23 works, and the same logic as before shows that x ≡ 23 (mod 105) gives all solutions
(because 105 = 15 · 7).

This brief exploration indicates the following theorem and its proof.

Theorem 1 (Sunzi’s Theorem [née Chinese Remainder Theorem]). Suppose N = n1n2 · · ·nk and
that the ni are pairwise relatively prime integers (so gcd(ni, nj) = 1 for i 6= j). Then for any integers
a1, . . . , ak the system of congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

has precisely one solution x = x0 with 0 ≤ x0 < N and all solutions are of the form x ≡ x0 (mod N).

Proof. We proceed by induction on k. If k = 1, then we may take x to be the remainder of a1
divided by n1 and clearly all solutions are of the form x+ n1r = x+Nr, r ∈ Z.

Fix s ≥ 1 and suppose that all such systems with k = s terms have solutions as described. Now
consider a system of s+ 1 congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ as (mod ns)

x ≡ as+1 (mod ns+1).

where the ni are pairwise relatively prime. Let us first endeavor to solve the first two congruences.
Since n1 and n2 are relatively prime, there are integers m1 and m2 such that 1 = m1n1 + m2n2.
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Construct the number a1,2 = a2m1n1 + a1m2n2. Since m1n1 = 1 −m2n2, we have a1,2 = a2(1 −
m2n2) + a1m2n2 = a2 + n2(a1m2 − a2m2). Reducing mod n2, we get a1,2 ≡ a2 (mod n2). If we
begin with the substitution m2n2 = 1 −m1n1, we similarly get a1,2 ≡ a1 (mod n1). Thus a1,2 is
a simultaneous solution of the first two congruences. We get all such solutions by considering
x ≡ a1,2 (mod n1n2). (The diligent reader should check this.) Thus we can solve the original s+1
congruences by solving the system

x ≡ a1,2 (mod n1n2)

x ≡ a3 (mod n3)

...

x ≡ as+1 (mod ns+1)

with only s congruences. Note that all the moduli are relatively prime, so we may invoke the
inductive hypothesis, and we are done. �

This method of proof is constructive, in that it provides us with a method via which we can solve
our system of congruences. By repeated application of the extended Euclidean algorithm, we can
eliminate congruences one at a time until we get to a final congruence x ≡ a1,2,...,k (mod N), where
a1,2,...,k is our solution.

In practice, this is not the fastest way to find a solution. (It requires k − 1 applications of the
extended Euclidean algorithm.) Instead, suppose that nk is the largest of the moduli. There are
N/nk = n1n2 · · ·nk−1 numbers x such that 0 ≤ x < N and x ≡ ak (mod nk). If N/nk is relatively
small, we (or a computer) can simply check if each of these numbers satisfies all k congruences.

As an example, consider the system of congruences x ≡ 0 (mod 2) ≡ 1 (mod 3) ≡ 2 (mod 5) ≡
3 (mod 7). The solutions to x ≡ 3 (mod 7) with 0 ≤ x < 2 · 3 · 5 · 7 = 210 are x = 3, 10, 17, . . . , 206.
Eliminating odd x we are left with x = 10, 24, 38, 52, 66, 80, 94, 108, 122, 136, 150, 164, 178, 192, 206
as possible solutions. It is easy to see that only x = 52, 122, 192 are congruent to 2 (mod 5), and
then that only x = 52 is 1 (mod 3). We conclude that the only solutions to this system of congru-
ences are integers x ≡ 52 (mod 210).

There is a direct way to construct solutions as well. Let Ni = N/ni for i = 1, . . . , k. Observe that
Ni and ni are relatively prime, so we can find Mi and mi such that

1 = MiNi +mini.

The reader may check that

x =

k∑
i=1

aiMiNi

is a solution to the system of congruences, and thus all solutions are of the form

x ≡
k∑

i=1

aiMiNi (mod N).

This recipe gives us a function

f : Z/n1Z× Z/n2Z× · · · × Z/nkZ −→ Z/NZ

(a1, a2, . . . , ak) 7−→
k∑

i=1

aiMiNi

(We have engaged in the standard subterfuge of conflating integers and their congruence classes.)
There is another natural function g : Z/NZ → Z/n1Z × · · · × Z/nkZ sending x to the k-tuple
consisting of the reductions of x modulo each ni. The interested reader may check that these
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functions are inverse to each other, and thus these sets are in bijection. In fact, these assignment
also respect addition and thus are isomorphisms of abelian groups, a topic one can explore more fully
in Math 332!

Problem 1. Find all solutions to the system of congruences

x ≡ 2 (mod 11)

x ≡ 3 (mod 12)

x ≡ 4 (mod 13).

Problem 2. Does Sunzi’s theorem still hold if we drop the requirement that the ni are relatively
prime? Prove your assertion or provide a counterexample.
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