MATH 113: DISCRETE STRUCTURES FINAL EXAM REVIEW

» Trees

- Definition: connected acyclic graph.
- Trees have leaves.
- Trees can be grown.
- Trees with n vertices have n 1 edges.
- Cayley's theorem: The number of labeled trees with *n* vertices is n^{n-2} .
- Pr
 üfer codes.
- » Catalan numbers
 - Catalan number C_n counts unlabelled full binary trees with n + 1 leaves.
 - Catalan recurrence: $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$. Closed formula: $C_n = \frac{1}{n+1} {2n \choose n}$.

 - Other structures counted by Catalan numbers:
 - * Dyck paths.
 - * Parenthesizations.
 - * Temperley–Lieb diagrams.
- » Probability theory
 - Basic objects: sample space, events, probability distribution.
 - Uniform distribution on a finite sample space.
 - Independent events.
 - Conditional probability P(A|B).
 - Bayes' Law: P(B|A) = P(A|B)P(B)/P(A).
 - Law of Total Probability: $P(A) = \sum_{i} P(A|B_i)P(B_i)$ for $\{B_i\}$ a partition.
 - Random variables.
 - Expected value E(X).
 - Linearity of expected value: E(cX + Y) = cE(X) + E(Y).
 - Special types of random variables:
 - * Bernoulli.
 - * Binomial.
 - * Indicator.
- » Number theory
 - Divisibility.
 - Prime numbers.
 - Fundamental theorem of arithmetic (unique prime factorization).
 - Infinitude of primes.
 - Prime number theorem: $\pi(n) \sim n/\log n$.
 - Fermat's little theorem: $p|a^p a$.
 - Greatest common divisors and Euclidean algorithm.
 - Congruences.
 - Multiplicative inverses modulo *n*.
 - Euler ϕ function: $\phi(n) = |\{r \in \mathbb{N} \mid r < n \text{ and } gcd(r, n) = 1\}|.$
 - Euler's formula: $\phi(n) = n(1-1/p_1)(1-1/p_2)\dots(1-1/p_k)$ for n with prime factors $p_1,\ldots,p_k.$

Problem 1. Suppose that the vertices of a graph have degrees 4, 1, 1, 1, 1. Decide whether this graph is a tree, is not a tree, or could be a tree or non-tree and prove your assertion. What if the vertex degrees are 3, 3, 2, 1, 1?

Solution. First consider the case with degrees 4, 1, 1, 1, 1. There are 5 vertices, one of which has degree 4; this vertex must be adjacent to the other four vertices. This already gives the remaining vertices degree 1, so we have determined the graph: it's a star, which is a special kind of tree.

If the vertex degrees are 3, 3, 2, 1, 1, then

$$2|E| = \sum_{v \in V} \deg v = 3 + 3 + 2 + 1 + 1 = 10,$$

so there are 5 edges. A tree on 5 vertices as 4 edges, so this graph cannot be a tree.

Problem 2. Suppose that 2n people are seated around a circular table. In how many ways can they simultaneously shake hands with another person at the table so that none of their arms cross each other? Draw pictures of the n = 1, 2, 3 cases, come up with a conjecture, and prove it.

Solution. By deforming the table into a square with 1, 2, ..., n on the top edge and 2n, 2n-1, ..., n+1 on the bottom, we see that non-crossing handshakes correspond to a Temperley–Lieb diagram on 2n nodes. Thus there are C_n ways for the group to shake hands without crossing.

Problem 3. For a permutation σ of 2n, let $X(\sigma)$ be the number of $i \in 2n$ such that $\sigma(i) > 2i$. Determine the expected value of X.

Solution. For $i \in \underline{n}$ let χ_i be the indicator variable such that

$$\chi_i(\sigma) = \begin{cases} 1 & \text{if } \sigma(i) > 2i, \\ 0 & \text{if } \sigma(i) \le 2i. \end{cases}$$

Then $X = \sum_{i=1}^{2n} \chi_i$ and we may compute its expected value as

$$E(X) = \sum_{i=1}^{2n} E(\chi_i) = \sum_{i=1}^{2n} P(\sigma(i) > 2i).$$

Note that it is impossible for $\sigma(i) > 2i$ for $i \ge n$, so we can rewrite this sum as $\sum_{i=1}^{n-1} P(\sigma(i) > 2i)$. For a fixed $i \in \underline{n-1}$, $P(\sigma(i) > 2i) = \frac{2n-2i}{2n} = \frac{n-i}{n}$ [justify this!], so

$$E(X) = \sum_{i=1}^{n-1} \frac{n-i}{n} = \frac{1}{n} \sum_{j=1}^{n-1} j = \frac{1}{n} \cdot \frac{(n-1)n}{2} = \frac{n-1}{2}.$$

Problem 4. For $a, b, c, n \in \mathbb{Z}$ suppose that $ac \equiv bc \pmod{n}$. Let $d = \gcd(c, n)$ and prove that

 $a \equiv b \pmod{n/d}$.

Solution. Suppose that $ac \equiv bc \pmod{n}$. Then there exists $k \in \mathbb{Z}$ such that ac - bc = kn. Dividing by $d = \gcd(c, n)$, we get

$$a(c/d) - b(c/d) = k(n/d)$$

where c/d, $n/d \in \mathbb{Z}$. It follows that

$$a(c/d) \equiv b(c/d) \pmod{n/d}.$$

Observe that gcd(c/d, n/d) = 1, so c/d has a multiplicative inverse in $\mathbb{Z}/(n/d)\mathbb{Z}$. Multiplying by this number produces the congruence $a \equiv b \pmod{n/d}$.