MATH 113 COURSE LOG

This document contains a running log of problems, solutions, and topics discussed in class. If
you find typos or find something confusing, please contact me at ormsbyk@reed.edu.
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1. WEEK 1

1.1. Wednesday.

Question 1.1.1 (Non-attacking rooks). Rooks are chess pieces which move vertically and horizon-
tally. We say that two rooks are attacking each other if they are in the same rank (i.e. row) or file
(i.e. column). Is it possible to place 8 rooks on a standard 8 x 8 chessboard so that no two rooks
are attacking each other? In how many different ways can non-attacking rooks be placed on the
board? What if the chessboard is n x n and you have n rooks?

FIGURE 1. Pacifist rooks on a 2 x 2 chessboard.

Solution. Placing n rooks along the diagonal of an n x n chessboard exhibits a non-attacking con-

figuration. We can enumerate all examples by placing rook 1 in any of the n positions in the first

column, placing rook 2 in any of the n — 1 positions in the second column not attackable by the

first rook, placing rook 3 in any of the n — 2 positions in the third column not attackable by the
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first two rooks, etc. For rook k, there are n — k + 1 possibilities in the k-th column, and for the
final rook there are n — n + 1 = 1 possible placements in the n-th column. In total, there are
n(n —1)(n —2)---2-1 = n! non-attacking configurations of n rooks on an n x n chessboard. [

1.2. Friday. We began this course meeting with a discussion of the syllabus, and then moved on
to the following problems.

Question 1.2.1. In how many distinct ways can the letters in the word MISSISSIPPI be arranged?

Solution. Begin by artificially labeling the letters My, I, S1, S, I, S3, S4, I3, P1, P>, 14 and noting
that there are 11 letters total. There are 11! ways to arrange the labeled letters (11 choices for the
tirst letter, 10 for the second, etc). But this overcounts: given a particular word of labeled letters,
we can rearrange the I's in 4! ways, rearrange the S’s in 4! ways, and rearrange the P’s in 2! ways
and still get the same word of unlabled letters. Thus there are

11!
41412!
ways to rearrange the letters in MISSISSIPPI. O

= 34, 560

Question 1.2.2 (Monotonic paths). A path on a square grid is called monotonic if it proceeds only
by single steps right or up. On a 4 x 4 (or n x k) grid, how many distinct monotonic paths go from
the bottom left corner to the top right corner? What does this have to do with Figure 2P

FIGURE 2. Bert and Lisa experience the Galton board

Solution. By an n x k grid, let’s assume we mean ordered pairs of integers (a,b) where 0 < a < n
and 0 < b < k. Our aim is to go from (0, 0) to (n, k) without leaving the n x k grid and while only
taking unit steps right or up.
First note that we have to take n + k total steps to achieve our goal. Furthermore, exactly n of
those steps can go right, and exactly k of those steps can go up (otherwise we don’t get far enough
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or we leave the grid). Thus we can count the number of monotonic paths by counting the number
of “words” with n R’s (for right) and k£ U’s (for up).

As a first approximation, we can label the R’s Ry, R, ..., R, and the U’s Uy, Us, . .., Uy. There
are (n + k)! ways to order these distinguishable letters. But this is an overcount! The words
R1RyU; R3Uy and R3RyUs R1 Uy both correspond to RRU RU; any re-ordering of the R’s and any
reordering of the U’s gives the same word. Thus there are

(n+ k)!
n!k!
monotonic paths. U

Remark 1.2.3. What does this have to do with the “Galton board” of Figure[2 Label the top center
peg (0,0). As the ball bounces down, it bounces either right or left (corresponding to R or U in a
monotonic path). We have counted the total number of ways the ball can bounce so as to land in
the trough labeled (n, k). We’ll have more to say about this and the so-called binomial distribution
later.

Remark 1.2.4. Later, we will identify the number (n + k)!/(n!k!) as the binomial coefficient ("1*) =
(";gk), a quantity some of you may know something about already. For now, just keep this fact in

mind.



2. WEEK 2
2.1. Monday.

Problem 2.1.1. Is it always the case that AU(BNC) = (AUB)N(AUC)? Draw a picture to support
your assertion and then prove it.

Solution. Yes! See Figure [3|for a graphical representation of this fact.

For a more formal proof, let X = AU (BNC)andletY = (AU B)N (AUC). As is typical, we
prove that X =Y by showing that X C Y and Y C X.

X CY:Suppose x € X, which means thatz € Aorx € BNC,ie,x € Aor(z € Bandx € C).
Ifx € A,thenz € AUBandx € AUC,sox € YV;ifx € Bandz € C,thenx € AU B and
x € AUC,sox € Y. We have thus seen that z € X impliesz € Y,s0 X C Y.

Y C X: Supposey € Y,soy € AUBand y € AU C. For the first condition to hold, y € A or
y € B. Equivalently,y € Aory € B\ A. (Do yousee why?)Ify € A, theny € X = AU (BnNC);
if y € B~ A, then since y € AU C, it must be in C (since it’s not in A). Thus when y € B \ A,
y€ Bandy € C,ie,y € BNC,whence y € X. No matter what, whenever y € Y, y is also in X,
soY C X.

We havejustseenthat X CYandY C X,so X =Y. O

Cartesian product. There is another operation on sets called the Cartesian product. For sets A and
B, their Cartesian product is the set

Ax B={(a,b)|a€ Abe B},
the collection of ordered pairs where the first element is in A and the second is in B.

Question 2.1.2. Big Brothers Big Sisters of Portland has a collection A of 30 adult volunteers and
group C' of 50 children in need of an adult partner. What is a set which describes the possible
adult-child pairings? How many adult-child pairings exist?

Answer. The set A x C consists of pairings (a,c) where a € Aand ¢ € C, so A x C consists of all
possible adult-child pairings. There are 30 adults, each of which can be paired with any of the 50
children, so there are 30 - 50 = 1, 500 possible pairings. O

Problem 2.1.3. Find a general formula for |A x B| in terms of |A| and |B|.

Solution. We claim that |A x B| = |A||B|. Indeed, there are |A| ways to fill the first entry, and |B|
ways to fill the second. O

Functions. Functions are ways of relating one set to another. Thus to each element a of a set A, a
function assigns exactly one element b € B. If the function’s name is f, then we write b = f(a).

The set A is called the domain of f and B is its codomain (aka range). This can all be compactly
expressed via the notation f : A — B.

Each function f : A — B has an associated graph Gy = {(a,f(a)) | a € A} € Ax B. A
generic subset G C A x B is the graph of a function if and only if for each a € A there is a unique
b € B such that (a,b) € G. In set theory (which aims to express every mathematical concept in
terms of sets), a function is actually defined to be such a special subset of A x B. It's good to be
aware of this formalism, but more useful in everyday mathematical practice to think of functions
as assignments.

Problem 2.1.4. Which of the following subsets of {1, 2,3} x {a, b, ¢,d} are functions?

@ {(1,a),(2,0),(3,d)}
(b) {(2,d),(3,¢)}
(© {(1,0),(2,¢),(3,a),(2,d)}



FIGURE 3. A graphical representationof AU (BNC)=(AUB)N(AUC).

() {(1,0),(2,a),(3,a)}

Solution. (a) This is a function: each element of {1, 2,3} appears in the first coordinate precisely
once, and the second entries are all elements of {a, b, ¢, d}.
(b) This is not a function since no term of the form (1, y) appears in the set.
5



(c) This is not a function since 2 appears twice in the first coordinate.
(d) This is a function. (It’s fine for elements of the codomain to be repeated. This particular

function is called the constant function with value a.)
O

2.2. Wednesday. The floor function | | : R — R sends = € R to the greatest integer less than or
equal to z. For instance, [4.5] =4, |17| =17, and |—7| = —4.

Problem 2.2.1. Draw a graph of | | and check that it is a function. What is the image of the floor
function? Is it injective or surjective?

Solution. A graph of | | looks like this:

e——o _5 L

The image of | | is exactly the set of integers, Z. Indeed, for n € Z, |[n| = n,so Z C im| |. By its
definition, |z| € Z forall z € R, so im| | C Z as well, hence im| | = Z.

Since the image of the floor function is not its entire codomain, R, it is not surjective; further-
more, the floor function is not injective since, for instance, |0] =0 = [1/2]. O

Problem 2.2.2. Define f : N — Z by

if n is even,

_)3
fm) {15” if n is odd.
Show that f is a bijection.

Solution. We first show that f is injective. Suppose that f(n) = f(m). If n and m are both even,

then we know n/2 = m/2, and multiplying by 2 we conclude that n = m. If n and m are both

odd, then we know (1 — n)/2 = (1 — m)/2; multiplying by 2, subtracting 1, and then multiplying
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by —1, we get n = m. If n is even and m is odd, then by definition f(n) = n/2 > 0 and f(m) =
(1 —m)/2 < 0, a contradiction. If n is odd and m is even, we similarly get f(n) < 0 and f(m) > 0,
a contradiction. We conclude that whenever f(n) = f(m), in fact n = m, so f is injective.

We now show that f is surjective, concluding our proof of bijectivity. If a is a nonnegative
integer, then 2a is an even natural number and f(2a) = (2a)/2 = a. If a is a negative integer, then
1 —2ais an odd natural number, and f(1 —2a) = (1 — (1 —2a))/2 = a. We conclude that im f = Z,
so f is surjective. O

Problem 2.2.3. Suppose A and B are finite sets and f : A — B is injective. What can we say about
|A| and | B|? What if f is surjective?

Solution. If f : A — B is injective, then |A| < |B|. If f : A — B is surjective, then |A| > |B|. O
Problem 2.2.4. Let F(A, B) denote the set of functions with domain A and codomain B. If |A|, | B| <

oo, whatis |F'(A, B)|? (In other words, how many functions are there with domain A and codomain
B?)

Solution. We claim that there are | B|4! such functions. Indeed, for each element of the domain,
we can assign any of |B| different potential values. Since there are |A| elements of A, the count
amounts to taking the |A|-fold iterated product of | B| with itself, i.e., | B|I4. O

Remark 2.2.5. The set F/(A, B) is often denoted B“. With this notation, we have just shown that
|B4| = |B|.

Suppose A and B are sets and f : A — B is a function. If A" C A, then the image of A’ in B is
defined as

fA) = {f(a) | a € AY.
Note that f(A) = im(f). If B’ C B, then the preimage of B’ in A is defined as
fH(B):={ac Al fla) € B'}.

In other words, f~1(C) consists of everything in A pushed into C by f.
Problem 2.2.6. Determine f(@) and f~1(@). More generally, when is f~}(B’) = @?
Solution. By definition, f(@) = {f(a) | a € @}. Since there are no a in the empty set, we conclude
that f(9) = @.

By definition, f~}(@) = {a € A | f(a) € &}. Since there are no f(a) in the empty set, we
conclude that f~1(2) = @.

If f~4(B') = @, then f(a) € B’ forall a € A, i.e., the function f completely misses the set B’
This is equivalent to im f N B’ = @. O

Problem 2.2.7. For A;, Ay C A, B1,B> C B,and f : A — B, prove that
(A1 U Ag) = f(A1) U f(A2),
f(A1N Ag) C f(A1) N f(A2),
f Y B1UBy) = f1(By) U f1(By), and
FHBiNBy) = fH(B1) N fH(By).
Find an example to show that equality does not necessarily hold in the second line.

Solution. For each equality X =Y, we need to demonstrate the two inclusions X C Y and Y C X.
f(Al U AQ) - f(Al) U f(AQ) Ify € f(Al U AQ), then Yy = f(.ili‘) forsomex € A1 U As. If x € Ay,
theny € f(A;), and if x € Ay, theny € f(A2). In either case, y € f(A;) U f(A2), proving that
f(A1U Ag) C f(A1) U f(A2).
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f(A1) U f(A2) C f(A1 U Ag): Suppose y € f(A1) U f(Az). Ify € f(A1), theny = f(z) for some
x € Aj;suchanzisalsoin AjUAy, soy € f(A1UAg). Ify € f(A2), theny = f(x) for some z € Ay;
such an zisalsoin A; U Ay, soy € f(A; U A). It follows that f(A;) U f(A2) C f(A1 U As).

f(A1N Ag) C f(A1) N f(Ag): Ify € f(A1 N Ag), theny = f(z) for some z € A; N Ay. Such an x
isin A; and Ag, and thus y = f(z) isin f(A1) and f(As2), whence f(A1 N Ag) C f(A1) N f(As2).

Y B1UBy) C f~YB1)UfY(By): Ifx € f~1(B1UBy), then f(x) inB;U By, and thus f(x) € By
or f(z) € Bs. In the first case, z € f~!(Bj); in the second case, » € f~!(Bsy). Thusz € f~1(By) U
f~1(B2), and we conclude that f~1(B; U By) C f~1(By) U f~1(Ba).

fHB)UfH(B) C f Y B1UBy): Ifx € f~1(By)U f~}(Bs), thenz € f~}(By)orz € f~1(By).
In the first case, f(z) € By C B1UBjy,so f(x) € B1UBy; similarly, in the second case f(z) € B1UBs.
Thus always = € f~1(B; U By) and we conclude that f~1(B;) U f~1(Bs) C f~1(B1 U By).

The final equality follows a similar line of argument. Make sure you can write out the proof on

your own! O
2.3. Friday.
Problem 2.3.1. If ay,aq,...,a; € {0,1}, we write (ajaz...ag)2 for the integer represented by this

string in base 2; in other words,
(alag - ak)Q = a12k71 + (122]672 +---+ (Ik_lzl + akQO.

(a) How do you express 2 - (ajaz . . . a)2 in binary?
(b) Find a closed formula for the n-th term in the sequence 15, 115, 1115, 11115, ....

Solution. (a) We compute
2-(ajag...ag)2 =2- (a12k71 + a2 24 a2+ ak20)
= a2 a2 b a1 22 a2 +0-2°
= (a1az . ..ax0)s.

(b) Let B,, denote the binary number withn 1’s. Thus By = 1o =1, By =115 =3, B3 =111, =7,
etc., and we conjecture that B,, = 2" — 1. Indeed, if we add 1 to B,, (and use the usual addition
algorithm with carrying) we get B,, + 1 = 100. .. 02, where there are n 0’s. Thus B,, + 1 = 2"
and B,, = 2" — 1.

O

Problem 2.3.2. Suppose A is a nonempty finite set containing n elements and that a is a particular
element of A. How many subsets of A contain a? (Try to solve this problem both with a direct
count, and also by producing a bijection between {B C A : a € B} and a set which you've
already counted.)

Solution (first method). Label the elements of A as a1 = a, ay, ..., a,. Then we can encode subsets
of A with n bit binary numbers where having first bit equal to 1 indicates « € A. Thus we are
seeking the number of n bit binary numbers with first bit equal to 1. We have two choices for each
of the remaining n — 1 bits, and thus there are 2"—1 subsets of A containing a. O

Solution (second method). Let X = {B C A | a € B} and let Y be the set of subsets of A \ {a}.
Define a function f : X — Y by f(B) = B \ {a}. (Note that B \ {a} is necessarily a subset of
A\ {a}, so the function is well-defined.) It suffices to prove now that f is a bijection.

To show injectivity, suppose f(B) = f(C) for some B,C € X. This means that B \ {a} =
C ~ {a}. Taking the union with {a} on both sides gives B = C, so f is injective.

It remains to show that f is surjective. Given C' C A \ {a}, it is easy to check that C U {a} € X
and f(C U {a}) = C, so f is surjective.
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We conclude that f is a bijection, whence |X| = |Y|. Since Y is the set of subsets of a set of
cardinality n — 1, both Y and X have cardinality 2"~ O

Remark 2.3.3. The second solution method for Problem is an important one in combinatorics. Un-
derlying it is the fact that two sets X and Y have the same cardinality if and only if there is a
bijection X — Y. If we know how to count the elements of ¥ and we can produce a bijection
X — Y, then we know X has the same number of elements!

Problem 2.3.4. Determine the number of ordered pairs (A, B) where
ACBC{L,2,...,n}.

Solution. There are 3" such pairs. Indeed, for each of the n elements of {1,...,n}, that element
may be in neither A nor B, just in B, or in both A and B. Since there are three such choices for
each element, there are 3" pairs. O

Problem 2.3.5. In what number system can you easily enumerate the pairs in Problem [2.3.47 Use
this number system to enumerate such pairs when n = 3.

Solution. We can use ternary (i.e. base 3) numbers to easily enumerate the pairs. Ternary numbers
consist of “trits” (trinary digits) taking the value 0, 1, or 2. We put a 0 for the k-th trit if k is in
neither A nor B; a 1 for the k-th trit if k is in B but not in A; and a 2 for the k-th trit if k is in both
B and A.

For n = 3, we get the dictionary

0003 «+— @ C @ C {1,2,3}

0013 «— @ C {3} € {1,2,3}

0023 < {3} C {3} € {1,2,3}
0103 +— @ C {2} C {1,2,3}

0113 +— @ C {2,3} C {1,2,3}
0123 +— {3} € {2,3} € {1,2,3}
0203 +— {2} C {2} C {1,2,3}
0213 +— {2} € {2,3} € {1,2,3}
0223 +— {2,3} C {2,3} C {1,2,3}
1003 «— @ C {1} C {1,2,3}

1013 «+— @ C {1,3} C {1,2,3}
1023 «— {3} C {1,3} C {1,2,3}
1103 «+— @ C {1,2} C {1,2,3}
1113 +— @ C {1,2,3} C {1,2,3}
1123 «— {3} € {1,2,3} C {1,2,3}
1203 «— {2} C {1,2} C {1,2,3}
1213 «— {2} € {1,2,3} C {1,2,3}
1223 < {2,3} € {1,2,3} € {1,2,3}
2003 +— {1} C {1} C {1,2,3}
2013 +— {1} C {1,3} € {1,2,3}
2023 +— {1,3} C {1,3} C {1,2,3}

2103 +— {1} C {1,2} C {1,2,3}
9



2115 +— {1} C {1,2,3} € {1,2,3}
2125 «— {1,3} C {1,2,3} C {1,2,3}
2205 +— {1,2} C {1,2} C {1,2,3}
2215 +— {1,2} C {1,2,3} C {1,2,3}
2225 +— {1,2,3} C {1,2,3} C {1,2,3}.
]
Problem 2.3.6. Generalize the above two problem to finite “chains of subsets” (A1, Az, ..., Ap)

where
Ay CAC--CA,C{L,2,...,n}.

Solution. We can use the base m + 1 number system to enumerate such chains. The (m + 1)-ary
digit ¢ in the k-th position indicates that k is in the sets A,;,—¢4+1, Am—r12, ..., Ap, and that k is not
in Al, Ce ,Am_g.

Since there are m + 1 choices for each of the n (m + 1)-ary digits, we see that there are (m + 1)"
such chains of subsets. O
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FIGURE 4. The ouroboros. (IMAGE: Wikipedia.)

3. WEEK 3

3.1. Monday. Forn € N, letn = {1,2,...,n}. In particular 1 = {1}, 2 = {1,2}, 3 = {1, 2, 3}, etc.
Note that 0 = @ by convention.

Problem 3.1.1. There are k™ length n strings where each entry in the string comes from a set with &
elements. Earlier, you proved that there are £" functions with domain n and codomain k. Is this a
coincidence? Explain.

Solution. There is a natural bijection explaining the co-incidence of the number £". Let X denote
the set of length n strings with each entry coming from k. For s = sys2...s, € X, let F denote
the function F; : n — k given by Fi(a) = s,. Then the assignment F' : X — k" taking s — Fisa
bijection, as we currently show.

Since X and E™ have the same cardinality, it suffices to show that F' is surjective. Given a
function f : k — n, define the string s by s, = f(a). Then F(a) = s, = f(a) forall a € n, so
F, = f, proving that F' is surjective. ]

Remark 3.1.2. It can feel disorienting when you first work with functions between sets of functions.
That’s OK! Like an ouroboros, mathematics gains strength from devouring itself.

We take the viewpoint that a permutation is a bijection from a set to itself. This can also be
though of as a reordering of the set. If 7 : n — n is a bijection, it reorders n from 1,2,...,n to
m(1),7(2),...,m(n). This also gives us the SAT-style analogy

string : function :: reordering : permutation.

In particular, we may view permutations of n as length n strings with entries in n in which no
‘letters’” are repeated.

Problem 3.1.3. Why does this prove that n! < n"? What do you think n!/n" approaches as n goes
to 0o?

Solution. There are n™ strings of length n with entries in n. Since permutations are special types
of such strings (those with no repetition) and there are n! permutations of n, we conclude that
n! <n™.

We can rewrite n!/n'" as

l! n n—1 n—2 z 1

n"  noon n non
As n — oo, each factor has a finite limit, and lim 1/n = 0, so lim n!/n" = 0. We can interpret this as
saying that there are vanishingly few permutations amongst all length n strings as n gets big. [
1



Define the sign of a permutation 7 : n — n by the formula

(1) —7m(2
sn(m = [ -0
1<icj<n 7
Here [ stands for product, and we are taking the product of the factors W(jj).:?(i)
over all pairs of integers (i, j) with 1 <1i < j <n.

as ¢ and j range

Problem 3.1.4. Write out the formula for sgn(m) when n = 3. Why is it the case that sgn(7) = £1 in
this case? Show that sgn(7) € {1} for all n.

Solution. For n = 3, the relevant pairs (¢, j) are (1,2), (1,3), (2,3) and thus for a permutation 7 :
3 — 3, we have
m(2) —w(1) 7B3)—x(1) 7(3)—-7(2)

2-1 ~ 3-1  3-2 °

Let S = {(i,j) | i,j € Z, 1 < i < j < n} be the index set for the product, and let 7(S) =
{(w(i),n(j) | i, € Z, 1 < i < j < n}. The crucial observation is that for each (i,j) € S, there
is exactly one (k,¢) € S such that either (7(k),n(¢)) or (w(¢),n(k)) is equal to (i,j). Reordering
the numerators and denominators in the product expansion of sgn(m), we see that each %j(k)
is either 1 or —1, depending on whether the order of i and j was swapped by 7. Thus the product
as a whole is (—1)" where m is the number of pairs (7, j) with order swapped by =; in particular,
sgn(m) = (—1)™ e {£1}.

We now justify the crucial observation. For a given (i,j) € S, we know there exist unique
k,l € nsuchthat 7(k) =iand 7(¢) = j. If k < ¢, then (k, /) € S is the desired pair; if k£ > ¢, then
(¢, k) € S is the desired pair. O

sgn(m) =

3.2. Wednesday.

Problem 3.2.1. For the following relations (with their standard meanings), determine what (if any)
of the three properties of an equivalence relation they have: #, >, <.

Solution. The relation # is not reflexive (a # a is false), is symmetric (if a # b then b # a), and is
not transitive (0 # 1 and 1 # 0, but 0 # 0 is false).

The relation > is not reflexive (a > a is false), is not symmetric (1 > 0 but it is not the case that
0 > 1), and is transitive.

The relation < is reflexive, is not symmetric, and is transitive. ]

Problem 3.2.2. Consider the relation ~ on R such that  ~ y if and only if + — y € Z. Prove that ~
is an equivalence relation.

Solution. We check the properties one by one, beginning with reflexivity: if x € R, then x —z =
0 € Z, so x ~ z. For symmetry, suppose « ~ y, meaning thatx —y € Z. Theny —z = —(z — y) is
an integer as well, so y ~ x. Finally, we check transitivty: if z ~yand y ~ 2, thenz —y,y — 2 € Z.
Thus (z—y)+(y—z2)=x—z2€Z,s0ox ~ z. O

Problem 3.2.3. How many ways can we string n distinct beads on a necklace? We say that two lists
of the n beads are equivalent if each bead is adjacent to the same two beads on each list. (The first
and last beads on the list are considered adjacent.)

(a) Prove that the above relation on bead lists is an equivalence relation.
(b) How many lists are in an equivalence class?
(c) How many equivalence classes are there?
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Solution. Write ~ for the relation defined in the problem. Without loss of generality, call the beads
1,2,...,n, and write a = ajas - - - a, for a list of these beads. To say that a ~ b is to say that for
each i € {1,...,n} there exists some j € {1,...,n} such that a;_; = b;_ and a;41 = bj11 (Where
we interpret ag as a,, and interpret a,, 1 as a1), or a;—1 = bj41 and a;41 = bj_1.

Lemma 3.2.4. For lists a, b, we have a ~ b if and only if b is obtained from a either by rotating the indices
of a cyclically, or by reversing the order of the indices and then rotating them cyclically.

(a) Reflexivity is obvious (right?). To check symmetry, suppose a ~ b. By the lemma, we can
reverse the cycling/order-reversion that takes a to b to get b ~ a. To check transitivity, just
note that composing two cycling/order-reversions gives a new cycling/order-reversion.

(b) There are n ways to cycle the indices of a given list (including the “do nothing” cycling). Each
such cycling can be composed or not composed with order-reversion. Thus there are 2n lists
in each equivalence class.

(c) Since each equivalence class has size 2n and there are n! distinct lists, we have

n!
2n
total equivalence classes.
u

Problem 3.2.5. Use an equivalence class count to interpret and answer the following question: n
Americans and n Russians attend a meeting and sit around a round table. If Americans and
Russians alternate seats, in how many ways may they be seated?

Solution. Label the seats 1, ..., 2n. Put Russiansin seats 1, 3, ..., 2n — 1 and put Americans in seats
2,4,...,2n. There are n!-n! = (n!)? ways to do so. Declare two such seatings equivalent if one can
be rotated to obtain the other. (We take it as obvious that this forms an equivalence relation, but
it’s good practice to check the conditions.) There are 2n such rotations, so there are

(n1)?
2n
seating arrangements. O

Problem 3.2.6. We place two red and two black checkers on the corners of a square. Say that two
configurations are equivalent if one can be rotated to the other. Check that this is an equivalence
relation, and write down its equivalence classes. Can the number of equivalence classes be found
by dividing 6 (the number of words in RRBB) by some natural number?

Solution. Again, it’s fairly “obvious” that this is an equivalence relation. (But check!) In order
to enumerate the equivalence classes, we will consider a word using RRBB to have first letter
corresponding to the color in the northwest corner, second letter corresponing to northeast corner,
third corresponding to southeast, and fourth corresponding to southwest. Each word has up to
four potentially distinct rotations:

RRBB — RBBR — BBRR — BRRB
RBRB — BRBR - RBRB — BRBR

We stop here because we’ve enumerated all the words in RRBB, but note that words are repeated
in the second set of rotations. The equivalence classes are in fact

{RRBB,RBRB,BBRR,BRRB} and {RBRB, BRBR}.

While it is the case that 2 = 6/3, it is not the case that each equivalence class has size 3, so it would
be inaccurate to say that we “found” the number of equivalence classes in this way. O
13



3.3. Friday. Recall that for natural numbers n, k, the number

(Z) _ n(n-1)(n-2}3!---(n—k+1),

read “n choose k,” is the number size k subsets of an n-element set. If n > k, this can also be
written as ﬁlk),

Problem 3.3.1. Compute the sums

(o)

(b))

(o) ()

(o) * () ()
(6)+ () ()

(o) )+ () + ()
(0)+ )+ (D))

and develop a conjecture regarding the value of

n ()« ()« (1)

where the sum’s final term is (") or () depending on whether n is odd or even, respectively.
Give a combinatorial argument proving that your conjecture is true.

Solution. We first compute

00
0-()-
(0)+ (o) + (3) =
(0)+ (2)+ (5) e
(0)+(2) + (2) + (§) ==
) () ()



Based on this evidence, we conjecture that (;) + (3) + (}}) + -+ = 2"~ . We can interpret this
conjecture as saying that the number of even-sized subsets of a size n set is 2" ~!. Since the total
number of subsets of such a set is 2", we could also say that precisely half of all subsets of a finite
nonempty set have even size.

One nice argument for this fact relies on the decision tree model of creating a subset: Recall that
the leaves of this binary tree correspond to the subsets. For each pair of leaves emanating from
the final layer of nodes, exactly one has even and one has odd size. Thus half of all subsets have
even size. O

Problem 3.3.2. Compute the sums

B

6) ()

0 () )
o))

BRI ORI ORe6)
HETH R A RH R )

by hand and develop a conjecture regarding the value of

2 2 2 2 2
0 1 2 n—1 n)
Give a combinatorial argument proving that your conjecture is true.

Solution. First we compute

-

0 (-2

0+ () () -

O ()

O+ () () =
O ()0



Suspciously and amazingly, these appear in the center column of Pascal’s triangle as the numbers
of the form (27?) We conjecture that

2 2 2 2 2
n n n n n R n n n\" _ 2n
0 1 2 n—1 n n
and note that this matches the cases computed above.
This puts us on the hunt for subsets of a size 2n set of size n. Suppose |A| = 2n and then color

half its elements blue and half its elements red. (We can do that!) To get a size n subset of A, we

can choose a blue elements and b red elements where a + b = n. For fixed a, there are (7) (}) ways
n n n

to do this. Since b = n — a, wehave (3) = (") = (¢),and so (0)(}) = (2)2 Letting a vary from
0 to n, we see that in sum we have

C= G0+ (6 -+ ) 6)
()< () ()

as desired. O
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4. WEEK 4

4.1. Monday. In-class exam on Chapter 1, functions, and equivalence relations.

4.2. Wednesday.

Problem 4.2.1. How many ways are there to write a nonnegative integer m as a sum of r positive
integer summands? (We decree that the order of the addends matters, so 3 + 1 and 1 + 3 are two
different representations of 4 as a sum of 2 nonnegative integers.) Develop a conjecture and prove
it.

Solution. After playing around for a while (OK, maybe a long while...), one comes to the conclu-
sion that (T:ll) gives the desired count. For instance, we can represent 5 as the sum of 3 positive
integersas3+1+1,14+3+1,14+1+3,24+2+1,2+1+4+2,0or1+2+2,and6 = (3)

A nice argument for this is given by the Balls and Walls methodﬂ Imagine that we have m balls
in a row. In order to represent m as a sum of r positive integers, we can place r — 1 walls in the
spaces between the balls, taking care to not place two or more walls in a single gap. For example,
thesum 7 =1+ 3 + 2 + 1 is represented by

There is clearly a bijection between such ball-wall configurations and the sums we are counting,
and each ball-wall configuration is specified by choosing » — 1 spots to places walls amongst the
m — 1 gaps between balls; this number is, of course, (T__ll). O

Problem 4.2.2. Use algebra and the binomial theorem to prove that

2n " /n\?
(=50
Proof. Let x be a variable. By the binomial theorem
2n o (20 i
(1+2) :Z&(l)x

In particular, the coefficient of ™ in this polynomial is (*").
We also have (1 + x)?* = (1 + z)"(z + 1)", and applying the binomial theorem to each factor

results in )
(1t = (Z (") ) > (1)

j=0
When we expand this product, we get a term contributing to ™ when i +n — j = n, i.e. when
i = j. Thus the coefficient of 2" is }_1*  (}) ? and this must equal our alternate computation of the

coefficient, (277:) . O

Problem 4.2.3. Use a combinatorial argument and an algebraic argument to produce two proofs of

the identity
"\ [k Y\ onem
% () ()= ()
k=0

[Hint for the algebraic case: First prove that () (%) = (") (7-™).]

m k—m

INée Stars and Bars, but that’s a little too militaristic for Reed in my opinion.
17



Combinatorial solution. The summands on the left-hand side are suggestive of first choosing k ele-
ments from a size n set, and then choosing m elements from the k elements. This could be modeled
by choosing a size k committee from n members, and then choosing a size m subcommittee of the
committee. Since we are summing these over £ = 0,1, ..., n while m is fixed, this counts the num-
ber of committees formed from {1,...,n} with a size m subcommittee. We can also count this
by first choosing the size m subcomm1ttee (in () possible ways) and then choosing a subset of
the remaining elements to form the remainder of the committee. Since there are n — m remaining
members, there are 2"~ ™ such subsets, and we conclude that there are (:1) 2"—™M committe-with-
size-m-subcommittee pairs from n members. Since both sides count the same thing, they are
equal. O

Algebraic solution. As the hint suggests, first note that

(Z) (Z) - k!(nni )l m!(kki m)!  (n— k)!rZi(k —m)!

n\(n—-m\ n! (n —m)! B n!
(m) (k:—m) T mln—m) (k—m)!(n—k)!  ml(k—m)(n—k)
These quantities are obviously equal, so (7) ( )=1(") (”*m)

while

k—m

We now leverage the identity 2"~™ = »"" ™ ("7™) to manipulate the right-hand side, first
noting that Y7~ " (") = Yi_,, (3_7) via the change of variables i = k — m. (Check that the

summands are in fact identical.) Thus we have

()= ()G m =2 (D))

where the second equality uses the hint’s identity. When k < m, ( :1 ) = 0, so the final sum can also
be indexed with k ranging from 0 to n, producing the desired identity. O]

4.3. Friday.

Problem 4.3.1. The 0-th diagonal in Pascal’s triangle is the constant sequence of 1’s. The first diag-
onal is the sequence of positive integers 1,2, 3,.... What is the second diagonal? The third? The
n-th?

Solution. By the n-th diagonal, we mean (8), ("Jlrl), (";2), (”;r?’), .... By iterated application of Pas-

cal’s identity, we know that (”+k ) is the sum of the preceding elements on the (k — 1)-th diagonal,

)0 () )

In particular, the second diagonal consists of the sums of consecutive positive integers,

COROMG N RCL

These numbers are sometimes called the triangular numbers. (Note that (*;*) = (1), so we can

alsowrite () =1+2+ -+ (n—1).) O

2t is also possible to give a combinatorial argument for this equality: The left-hand side counts k-subsets of an n-set
paired with an m-subset of the k-subset. The right-hand side counts the m-subset first and then chooses the remaining
k — m members of the k-subset from the remaining n — m elements of the n-set.
18



FIGURE 5. Pascal’s triangle, 0-th through 16-th rows.

Problem 4.3.2. You proved in your homework that n? = (}) + (”;l) Where do these terms appear
in Pascal’s triangle? Use your “second diagonal” interpretation from Problem 1 to produce a new
proof of this identity.

Solution. We have

<Z> =142+3+--+(n=-3)+(n—2)+(n—1)

<n—|—1) —ntn—1)+ -2+ +3+2+1

2
Since0+n=14(n—1) =24 (n—2) =34 (n—3) = --- = n (note the vertical alignment above),
and there are n such terms, we have that (}) + (";1) =n-n=n? O

Problem 4.3.3. How many odd numbers are there in the 2019-th row of Pascal’s triangle? (To
answer this, you may as well find a general formula for the number of odd numbers in the n-th
row of Pascal’s triangle. [Hint: How many odd numbers in the 2*-th row?])

Solution. Let a(n) denote the number of 1’s in the binary expansion of n. Let O(n) denote the
number of odd numbers in the n-th row of Pascal’s triangle. We claim that O(n) = 2‘1(”)E|

To present a good proof of this fact, we’ll need modular arithmetic, specifically mod 2 arith-
metic. We defer the proof until we’ve developed that technology. O

3How would you ever guess such a result?! Patience and experimentation, for starters. You might first get some
hunches by seeing that (a) the first several values of O(n) are 1,2,2,4,2,4,4,8,2,4, ..., and these are all powers of 2,
(b) O(2*) seems to always be 2 = 2*, and (c) O(2" — 1) seems to always be 2.
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5. WEEK 5
5.1. Monday.
Problem 5.1.1. Use induction to show that
20 4ol 92 4. ponlo9n
forn > 1.

Solution. For n = 1, we have 2° = 1 = 2! — 1, so the base case checks. Now fix some n > 1 and
suppose that 2° + 2! + ... 4 2"~1 =27 — 1. (This is our inductive hypothesis.) Then

Myt qponlpon—on _j4on—9.2" _1=2""_1
so the result holds for n+1 as well. By mathematical induction, the identity holds foralln > 1. 0O

Problem 5.1.2. Use induction to prove that the number of permutations of n = {1,2,...,n} isnl.

Solution. If n = 0, then n = 0 = @ and there is only one permutation of @. Since 0! = 1, this con-
firms the base case n = 0. Now fix n > 0 and suppose for induction that there are n! permutations
of n. Now think of a permutation 7 of n + 1 as its list of outputs, 7(1)7(2) - - - w(n)7(n + 1). All
such lists arise by first permuting n (in any of the n! ways) and then placing n + 1 at the start of
the list, in between two numbers, or at the end of the list. There are n + 1 such positions and hence

n!(n+1) = (n + 1)! permutations of n + 1. O
Problem 5.1.3. Use induction to prove that
1 1 1 1 n
12 23 3 T D vt
forn > 1.
Solution. If n = 1, then 1—12 = % = ﬁ, so the base case holds. Now fix n > 1 and suppose for
induction that {55 + 55 + 34 + - + n(%H) = 5. Then
1 1 1 1 1 n 1
1-2 + 2-3+ 3-4+'”+n(n+1) + (n+1)(n+2) T+l * (n+1)(n+2)
_on(n+2)+1
C (n+1)(n+2)
_ n?+2n+1
T (n+1)(n+2)
 (n41)?
(n+1D)(n+2)
n+1
T n+2
as desired. O

Problem 5.1.4. Use induction to prove that a convex n-gon has n(n — 3)/2 diagonals.

Solution. Our base case is n = 3, the triangle, which has no diagonals, and indeed 3(3 — 3)/2 = 0.

Fix n > 3 and suppose for induction that that a convex n gon has n(n — 3)/2 diagonals. Now

consider a convex (n + 1)-gon with vertices labeled 1,2,...,n + 1 in order. By the inductive hy-

pothesis, the n-gon with vertices 1,...,n has n(n — 3)/2 diagonals, and each of these is a diagonal

of our (n + 1)-gon. Additionally, the (n + 1)-gon has diagonals joining n +1t0 2,3,...,n — 1, and
20



it also has the diagonal from 1 to n. That amounts to n — 1 additional diagonals, so the (n+ 1)-gon
has
n(n —3) (n?>=3n)+(2n—-2) (m+1)((n+1)-23)
T tnol= 2 - 2

diagonals, as desired. O

Problem 5.1.5. Use induction to prove that
2n < 92n—2
n

Solution. When n = 5, we have (150) = 252 and 28 = 256, so the inequality holds in the base case.

Fix n > 5 and assume for induction that (27?) < 22n=2 Gince 22(nt1)=2 — 92n — 4. 92n-2 jt quffices
to prove that (2" ) < 4(*"). By algebra,

forn > 5.

n+1
2n+1)\  (2n+2)! (2n+2)2n+1) (2n)!  (2n+2)(2n+1) (2n
<n+1 >_(n—|—1)!2_ (n+1)2 SRz (n+1)2 (n)’

so it suffices to prove that % < 4. This is the case if and only if (2n+2)(2n+1) < 4(n+1)?,

ie,dn?+6n+2 < 4n?+8n+4,ie., 0 < 2n+ 2, which is in fact true for all natural numbers n. O

Remark 5.1.6. The reason the theorem does not extend to all natural numbers is because the base
case does not hold until n = 5.

5.2. Wednesday. The inclusion-exclusion principle tells us how to count the size of a union of
sets. Its first two cases are

|AUB| = |A[+|B|-|ANB|  and  |AUBUC| = |A|+|B|+|C|~|ANB|—|ANC|~|BNC|+|ANBAC.

The general formula is messier, but is underpinned by the same idea of counting, removing du-
plicate count, adding back in things removed too many times, etc.

Theorem 5.2.1 (Inclusion-Exclusion Principle). Suppose A1, As, ..., A, are finite sets. Then
‘AIUAQU"'AH|: Z |Ai1|_ Z |Ai1mAi2|+"'
1<i1<n 1<i1<i2<n
+ (=)t Z | Ay M A NV Ag |+

1< <o << <n
+ (=D A NnA N N Al
This can be equivalently phrased as

n

U

=1

= > (=N A

o+£JCn i€j

Problem 5.2.2. At a large university, 1232 students have taken a course in Spanish, 879 have taken
a course in French, and 114 have taken a course in Russian. Further, 103 have taken a course in
both Spanish and French, 23 have taken a course in both Spanish and Russian, and 14 have taken
courses in both French and Russian. If 2092 students have taken at least one of Spanish, French,
and Russian, how many students have taken a course in all three languages?
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Solution. Let S, F, and R denote the sets of Spanish, French, and Russian students, respectively.
We are given that
|S| = 1232, |F| = 879, |R| = 114,
and
|SNF| =103, |SNR| =23, |F'NR| = 14.
Furthermore, |S U F' U R| = 2092. By the inclusion-exclusion principle,

ISUFUR|=|S|+|F|+|R|—|SNF|—|SNR|—|FNR|+|SNFNR|

> ISNFAR|=|SUFUR|—|S|—|F| - |R|+ SN F|+|SAR|+|FAR]
= 2092 — 1232 — 879 — 114 + 103 + 23 + 14
= 7,
and this is the number of students taking a course in all three languages. O

Problem 5.2.3. How many poker hands (5 cards) from a regular deck (52 cards) have at least one
card from each of the four standard suits? Hint: Let Ng be the collection of hands containing no
spades, and similarly define Ng,, No, and N¢,. What is the relationship between the answer to this
question and | Ng U Ng, U No U Ng|?

Solution. Let S denote the set of hands with at least one card from each suit, and let H denote the
set of all hands. Then S = H \ (Nq UNg U No U Ny ) and |S| = |H| — |[Na U Ng U Noy U Ny |. Since
each hand contains 5 of the 52 cards, |H| = (552), and it remains to count | Ng U Ng U No U Ng|.

We proceed via inclusion-exclusion. Since only the excluded suit changes, we have |[Ng| =
|INa| = |No| = |Ng|, and for each of these counts we select 5 cards from the 52 — 13 = 39 cards
which aren’t of the selected suit. Thus the cardinality of each of these is (359). Each pairwise in-
tersection excludes 26 cards and thus has cardinality (256), and each triple intersection excludes 39
cards and thus has cardinality (153). The quadruple intersection is empty, since each card has some
suit. Note that there are (5 3
We conclude that

39 26 13
INa UNg UNoUNgy|=4- —6- +4-
S 5 S
52 39 26 13
S| = —4- 6 - —4- = 685, 464.

Alternate solution. We can also proceed without using the inclusion-exclusion principle. Every
such hand can be constructed by choosing a spade, then a club, then a heart, then a diamond, and
then one of the remaining 48 cards. This results in 13% - 48 choices, but overcounts in that the final
card may be swapped with the other card of its suit, resulting in the same hand. (Hands don’t
have an order.) Thus there are

) = 6 pairwise intersections and there are (;) = 4 triple intersections.

and

0

13% .48

= 685, 464
such hands. O

Second alternate solution. And here’s the other method we covered in class. In order to construct

such a hand, we first choose any of the 52 cards and note its suit. We then choose any of the

remaining 39 cards of a different suit, then any of the remaining 26 cards not of the first two suits,

then any of the remaining 13 cards not of the first 3 suits. Finally, we choose any of the remaining

48 cards. All such hands can be produced in this way, but there are still 4! to permute the first four
2



cards and 2 ways to swap (or not swap) the final card with the one matching its suit. Thus there
are
52-39-26-13-48
= 685, 464
4.2 ’

such hands. 0

5.3. Friday. The pigeonhole principle tells us that if we have n pigeonholes and k£ > n pigeons, then
if we put all the pigeons in pigeonholes, one of the pigeonholes must contain at least two pigeons.
In the language of functions, this says that if f : A — B is a function with |A| > |B|, then f is not
injective. (Careful! It does not say that f is surjective — make sure you appreciate the difference.)

The generalized pigeonhole principle says that if there are n pigeonholes and k > rn pigeons where
r is a positive integer, then if we put all the pigeons in pigeonholes, one of the pigeonholes must
contain at least » + 1 pigeons. This is equivalent to the statement that if IV objects are put in b
boxes, then some box contains at least [ V/b] objects.

Problem 5.3.1. In a round robin chess tournament with n participants, every player plays every
other player exactly once. Prove that at any given time during the tournament, two players have
finished the same number of games.

Solution. At any given moment, each player has played between 0 and n — 1 games, a range of n
possibilities, so the pigeonhole principle does not directly apply. Note, though, that if one player
has played n — 1 games, then everyone has played between 1 and n — 1 games, a range of n — 1
possibilities. If no players have played n — 1 games, then everyone has played between 0 and n — 2
games, again n — 1 possibilities. Thus the pigeonhole principle applies in both cases to guarantee
that (at least) two players have played the same number of games. O]

Problem 5.3.2. What is the least number of area codes needed to guarantee that the 25 million
phones in a state can be given distinct 10-digit telephone numbers of the form NXX-NXX-
X X XX where each X is any digit from 0 to 9 and each N represents a digit from 2 to 9? (The area
code is the first three digits.)

Solution. There are 8 - 10° seven-digit phone numbers (excluding area code) according to these
rules. With 3 or fewer area codes, there are at most 24 million distinct phone numbers, whence the
pigeonhole principle would guarantee phone number repetition in the state. With 4 area codes,
there are 32 million distinct phone numbers, a sufficient number to prevent repetition. O

Problem 5.3.3. Show that in the sequence 7, 77, 777, 7777, ...there is an integer divisible by 2003.
(Hint: First use “obvious” facts about integer divisibility to prove that if there are terms in the
sequence a; > a; such that a; — a; is divisible by 2003, then there is a term of the sequence divisible
by 2003. In order to show that such a;, a; exist, note that a; — a; is divisible by 2003 if and only if
a; and a; have the same remainder upon division by 2003; then use the pigeonhole principle.)

Solution. Following the hint, suppose a; > a; are terms of the sequence such that a; —a; is divisible
by 2003. The number a; — a; is of the form a;, - 10" for some positive integer r. Since 2003 does not
share any prime factors with 10 (in fact, 2003 is prime), we have that 2003 divides ay.

Now note that when we divide a term a; by 2003, we get a remainder between 0 and 2002. If
the remainders of terms a; and a; are equal, then a; — a; = 2003¢; +r — (2003¢; + ) = 2003(¢; — g;)
for some integers g¢;,q;,. Thus 2003 divides a; — a;. Finally, note that there are finitely many
remainders and infinitely many terms a; > a;, so such a pair with common remainder must
exist. g
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6. WEEK 6

6.1. Monday. Recall that a derangement is a fixed point-free permutation (meaning 7 (i) # ¢ for all
i) and that the number of derangements of an n-element set is

nj=nl(1—1/11+1/21=1/34--- 4+ (=1)"/n!).

Problem 6.1.1. How many derangements 7 of n have 7(1) = 2 and n(2) = 1? Fixsome k, 2 < k < n;
how many derangements 7 of n have 7(1) = k and (k) = 1?

Solution. If m(1) = 2 and 7w(2) = 1, then the restriction of 7 to {3,4,...,n} is a derangment of an
(n—2)-element set, and all such derangments arise in this way. Thus there are (n—2)j derangments
of this form. The same argument applies to derangements with 7(1) = k and n(k) = 1, with
{i|i€eN, 2<i<n,i#k}playing the role of {3,4,...,n}. O

Problem 6.1.2. How many derangements 7 of n have m(1) = 2 and 7 (2) # 1? Fixsome k, 2 < k < n;
how many derangements 7 of n have 7(1) = k and m(k) # 1?

Solution. If (1) = 2,and 7(2) # 1, then “the rest” of 7 (meaning the restriction of 7 to {2,3,...,n})
constitutes a bijection #’ : {2,3,4,...,n} — {1,3,4,...,n}. This bijection satisfies 7'(2) # 1,
7'(3) # 3, 7'(4) # 4, ..., 7'(n) # n, i.e, each element of the domain has one excluded outcome.
This is the same as counting the number of derangements of an (n — 1)-element set, (n — 1)j. The
same argument applies to any other fixed k, 2 < k < n and 7 such that 7(1) = k, w(k) # 1. O

Problem 6.1.3. Let nj be the number of derangements of n. Use your answers to Problems 1 and 2
to find a formula for nj in terms of (n — 2)j and (n — 1);. Determine 1; and 2;j by hand and then use
your formula to determine nj for n = 3, 4, 5, and 6; check that your answers match with the closed
formula given by the inclusion-exclusion principle.

Solution. Given a derangment 7 of n, we have 7(1) equal to some k, 2 < k < n, and there are n — 1
such k. Either (k) = 1, and there are (n — 2)j such derangments for each k, or (k) # 1, and there
are (n — 1)j such derangements for each k. We conclude that nj = (n—1)-(n—2)j+(n—1)-(n—1);,
or, more compactly,
nj = (n—=1)((n = 2)i + (n = 1)j).
By direct inspection, we have 1j = 0 and 2j = 1. Thus
3 =200+1) =2,

=3(1+2) =

5i=4(2+9) —44
6; = 5(9 + 44) = 265.

We also have
31 —-1/114+1/21—1/3) =3 — 2,
4'(1—1/1'+1/2'—1/3'+1/4'):12 441=09,
511 —1/114+1/21—=1/31+1/41 —1/5!) =60 — 20+ 5 — 1 = 44,
6!(1—1/114+1/2'—1/314+1/41 —1/5! +1/6!) = 360 — 120 + 30 — 6 + 1 = 265,

as expected. O
6.2. Wednesday.

Problem 6.2.1. In how many ways can you fill a 2 x n chessboard with 2 x 1 dominoes? (Each
domino must cover exactly two squares, but may be placed horizontally or vertically.) Work out
the answer directly for several small values of n, make a conjecture about the overall pattern, then

prove your conjecture.
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Theorem proved
by strong induction

The first n cases
imply the (n+1)-th

FIGURE 6. A set of dominoes for which the strong induction hypothesis is necessary?

Solution. Let D,, be the number of ways to fill a 2 x n chessboard with 2 x 1 dominoes. By inspec-
tion, we see that Dy = 1, Dy = 2, D3 = 3, Dy = 5, and D5 = 8. We thus suspect that D,, = Fj, 1
forn > 1.

We proceed by strong inductionﬁ having already verified the first several base cases. Now fix
n > 2 and suppose that D,, = F,,41 ad D,,—1 = F,,. Ina 2 x (n+ 1) chessboard, the top right square
must be covered by a horizontal or a vertical domino. In the first case, another horizontal domino
must be directly below the top right one, and thus it remains to fill a 2 x (n — 1) board with n — 1
dominoes. By the strong induction hypothesis, we can do this in D, _; = F;, many ways. In the
vertical case, it remains to fill a 2 x n board with n dominoes, which we can do in D,, = F}, ;1 many
ways. Since the cases are mutually exclusive, we conclude that the board may be filled in

Dn+1:Fn+Fn+1:Fn+2

many ways, finishing our proof. O

Problem 6.2.2. Mark the first entry in some row of Pascal’s triangle (this is a 1). Move one step east
and one step northeast, and mark the entry there. Repeat this until you exit the triangle. Compute
the sum of the entries you marked.

(a) Repeat this process for several other rows of Pascal’s triangle. Guess what pattern is emerging.
(b) Express your guess in terms of a sum of binomial coefficients and prove that it is true.

“In strong induction, your induction hypothesis is that for some n, the claim holds for that n and all previous n; you
then show that this hypothesis implies the claim for n + 1. See FigureEl
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Solution. Let S,, denote the sum in question when we begin with (g) Then Sp=1,51=1,5, =2,
S3 =3,84 =5,55 =8, and Sg = 13. We suspect that S,, = F}, 1. To prove this, we need to check
that Sop = F1, S1 = Fy,and S,,—1 + S, = Sp4+1 for n > 1. We have already seen the first two facts.

Fix n > 1. By definition, S,, = () + ("Il) + ("52) N (2) => 1o (”gk) (We have extended
the sum into the “0-range” of Pascal’s triangle in order to make the indexing easier.) Then

n—1 n
s =S (TR (1)
k=0 k=0

In the first sum, we can allow the indices to range from 0 to n by replacing k with k& — 1. (The first
term becomes ( ;) = 0, which is fine. Also note that the upper term of the binomial coefficient
becomesn — 1 — (k — 1) =n — k.) Thus
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where the third equality follows from Pascal’s identity. This final quantity is missing the ( 0 )

n+1
term from our definition of \S,, 1, but this is 0 so the two quantities are equal. We have shown that
Sp—1+ Sy = Sp+1, so our proof is complete. O

Problem 6.2.3. Extend the Fibonacci sequence backwards (with negative indices) via the relation
F, = Fy42 — F,41. Write out the terms F_5, F_4, F_3, ..., F3, Fy, F5 (and maybe a few more in
either direction). Come up with a conjecture about the relation between Fibonacci numbers with
negative indices and positive indices. Prove your conjecture.

Solution. We have F_1 = F1 — F() =1, F_Q = F() — F_1 = —1, F_3 = F_1 — F_2 =2, F_4 = F_Q —
F 3=-3,and F_5 = F_3—F_, = 5. Itappears that F_,, = (—1)""1F,, forn > 1. The base case has
been checked and, for a proof by strong induction, we fix n > 2 and assume F_,, = (—1)""!F,, and
F_(n_1) = (—1)""2F,_1. By definition, F_(, 1) = F_(,_1) — F_p = (=1)" 2F,_1 — (-1)" 'F, =
(-1)""%(F,—1 + F,) = (—1)"F,41, where the last equality uses the recursive definition of the
Fibonacci sequence and the fact that (—1)" = (—1)""2 for all n. This concludes our proof by

strong induction. O
6.3. Friday.
Problem 6.3.1. Compute the following sums:

F

Fi+ F3

Fy + F3+ F5

Fy+ F3+ F5 + F%
Fy+ F3+ F5 + F7 + Fy
Develop and prove a conjecture about the value of G, = >, Foi_1.

Solution. We have G; = 1, Gy = 3, G3 = 8, G4 = 21, G5 = 55. These are all Fibonacci numbers,
and after fiddling with indices for long enough, it appears that G,, = F5,. We have checked the
tirst several cases and, for a proof by induction, we fix n > 1 and assume that G, = F»,. Then
Gn+1 = Gn + Fopy1 = Fop + Fapy1 = Fopyoa = Fy(n 1), concluding our proof. ]

Problem 6.3.2. Develop and prove a conjecture about the value of F,_1Fj,11 — F2.
Proof. Forn > 1,let H, = F,,_1F,+1 — F?. Then

H=0-1-1*=-1

Hy=1-2—-1*=1

Hy=1-3-22=-1

Hy=2-5-3=1

Hs=3-8-5%=—1.

It appears that H,, = (—1)". We have verified H; = —1. For induction, fix n > 1 and assume
H, = (—1)". Then
Hn+1 — Fn+2Fn - Fﬁ-‘,—l

:(Fn‘i‘FnH)Fn—FgH
:Fg"‘(Fn_Fn-i-l)Fn—i—l
:Fg_Fn—an—l—l

— —Hy, = —(-1)" = (1",
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as desired.
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7. WEEK 7
7.1. Monday.

Problem 7.1.1. In this problem we will determine the number of regions in the plane created by a
system of n mutually overlapping circles in general position. By mutually overlapping, we mean
that each pair of circles intersects in two distinct points. By general position, we mean that there
are no three circles through a common point. Let a,, be the number of regions created by such a
system.

(a) Draw some pictures to determine ao, a1, az, and as.

(b) Do you have a conjecture regarding the value of a,,? Check it by drawing a picture to deter-
mine aq.

(c) Take a system of n — 1 circles (creating a,,—1 regions) then add an n-th circle which is mutually
overlapping and in general position. How many times does this circle intersect circles in the
system of n — 1 circles? How many arcs on the new circle are created by these intersections?

(d) Use your above analysis to determine a recurrence relation which a,, satisfies. (For which n
does the recurrence relation hold?)

(e) Use your recurrence relation to find a closed formula (only in terms of n) for a,, (at least for n
sufficiently large).

(bonus) Can you find a direct (as opposed to recurrence-based) argument for your formula in (e)?

Solution. (a) We see thatag =1, a7 =4, and a3 = 8.

(b) It is tempting to conjecture that a,, = 2", but from our picture we see that a4 = 14.

(c) The new circle intersects each of the n — 1 circles in two points, so there are a total of 2(n — 1)
intersections. This produces 2(n — 1) arcs on the new circle.

(d) Each arc splits an old region into two regions, i.e., creates one new region. Thus a,, satisfies
the recurrence a,, = a,—1 + 2(n — 1) for n > 2. (Our analysis in (c) depended on there being at
least one circle in the (n — 1)-th case.) Thus a,, is given by the initial conditions ap = 1, a1 = 2,
and the above recurrence.

(e) Iteratively applying the recurrence relation to a, when n > 2 results in

ap = ap-1 +2(n—1)
=ap-2+2(n—2)+2(n—1)
an-3+2(n—3)+2(n—2)+2(n—-1)

=a1+2(1)+2(2)+23)+---+2(n—-2)+2(n—-1)
=242(1424---+(n—1))
=2+n(n—1)
=n®—n+2.
Here we employed the identity 1 + 2+ --- 4+ (n — 1) = n(n — 1)/2 to get the second-to-last
equality. This proves that a,, = n?—n+2forn > 2. By coincidence, the identity holds for

n = 1 as well, but does not hold for n = 0.
O

Problem 7.1.2. An anxious ant wanders through a 3 x 3 grid of the form

11213

415]6

71819
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and only passes between cells via edges (as opposed to corners). We would like to count the
number p,, of length n paths the ant can take where there is no constraint on where the ant starts
or ends the path. (A “step” in the path is when the ant changes cells, despite the fact that this takes
the ant many many steps. We do not permit the “stay put” step.) A direct recurrence relation on
pn, is difficult to come by. (If the (n — 1)-th step is to cell 1, then the ant can only travel to 2 or 4,
but if the (n — 1)-th step is to cell 5, the ant can travel to 2, 4, 6, or 8.) Instead, we seek multiple
recurrence relations (and some good luck).

(a) Let a,, denote the number of length n paths ending in 1, let b, denote the number of length
n paths ending in 2, and let ¢, denote the number of length n paths ending in 5. What is the
relationship between p,, and these three sequences. (Use symmetry!)

(b) Determine a system of recurrence relations for the sequences ay, by, c¢,,. (This is like a recurrence
relation, but each sequence may depend on previous terms of the other sequences.)

(c) Use algebra to find a recurrence relation for b,, (only in terms of previous terms from the same
sequence).

(d) Put everything together to get a recurrence relation for p;,.

(e) Compute po, p1, p2, p3, p4, and ps. Why is the ant anxious?

Proof. (a) Each path ends in some cell, and by symmetry the same number of paths, a, end in
cells 1, 3, 7, and 9; similarly, the same number of paths, b,, end in 2, 4, 6, and §; the remaining
case is the ¢,, paths ending in cell 5. Thus p,, = 4a,, + 4b,, + cp.

(b) In order to end in cell 1 in n steps, the ant may either be in cell 2 or 4 at step n — 1. Thus
an = 2b,—1. To end in cell 2 in n steps, the ant may either be in cell 1, 3, or 5 at step n — 1. Thus
bn, = 2a,—1 + cy—1. Finally, ¢;, = 4b,,—; since to end in cell 5 in n steps, the ant must be in cell
2,4, 6, or 8 at step n — 1. Our system of recurrences is

an = 2b,—1
bn = 2ap-1 + cp-1
cp = 4b,_1.
(c) Since an—1 = 2b,—2 and ¢,—1 = 4b,—2, we get
by, =2-2b,_ 9+ 4b,_o = 8b,_o.

Since b; = 3 and by = 8, we can solve for b, explicitly as b, = 8"/2 - 8 = 8"/2*1 if  is even and
b, = 8=1/2.3if nis odd.

(d) We know that p,, = 4a,, + 4b,, + ¢, for n > 1, which becomes p,, = 4 - 2b,,_1 + 8b,,_2 + 4b,,_1 =
12b,_1 + 8b,_5 for n > 2. Thusif nisevenand > 2, p, = 12 - g(n=2)/2.3 4 g.g(n=2)/2+1 —
36 -8(n/2=1 4 8n/2+1 If nis odd and > 2, py, = 12-8("=D/2H1 4 8. 8(=3)/2. 3 — 12. gn=1)/24+1 4
3. 8(n—3)/2+1‘

(e) The explicit computations are not horribly illuminating, but the asymptotic growth is pro-
portional to 8"/2, which is exponential. In reality, the ant is paralyzed by the overwhelming

number of choices and simply stays put.
O

7.2. Wednesday.

Problem 7.2.1. A complete graph on n vertices, denoted K, has every possible edge. Draw pictures
of K3, K4, and K5. How many edges are there in a complete graph on n vertices? For a general
graph G = (V, E)), make an inequality relating |V'| and |E]|.

Solution. There are (’) edges in K, since there are as many edges as there are choices of 2 vertices.

Since K|y has the maximal number of edges amongst graphs with |V| vertices, we know that
|E| < ('g') for a general graph G = (V. E). O
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Problem 7.2.2. A graph G = (V, E) is called bipartiteif V = AU B with AN B = & and there are no
edges between vertices in A and similarly for B (so only edges between a vertex in A and a vertex
in B are allowed). The complete bipartite graph on p + g vertices, denoted K, 4, has |A| = p, |B| = ¢,
and all possible edges between A and B.

(a) Draw pictures of K> 3 and K3 5.

(b) How many edges are in K, ,?

(c) If |A| = pand |B| = ¢ with AN B = @, how many (not necessarily complete) bipartite graphs
have vertex set A U B?

Solution. (a)
(b) Each of the p vertices in A is connected to all g vertices in B, so K, ; has pq edges.
(c) Each of the pq potential edges joining A to B is either in or not in the graph. Thus there are 274
such bipartite graphs.
]

Problem 7.2.3. Suppose G = (V, E) and G' = (V', E’) are graphs.

(a) When should a function f : V' — V' be considered a “map” G — G'?
(b) When should we consider G and G’ to be “the same” graph?

Proof. (a) The function must take edges to edges, so we require thatif {v, w} € E, then {f(v), f(w)} €
E'

(b) We demand that there exist maps of graphs f : G — G’ and g : G’ — G such that f o g = idy~
and g o f = idy. Thus f is a bijection on the set of vertices, it preserves edges, and its inverse
function also preserves edges. This is equivalent to f being a bijection on vertex sets which
induces a bijection on edge sets {v, w} — {f(v), f(w)}.

O

7.3. Friday.

Problem 7.3.1. Let G = (V, E) be a graph with connected subgraphs H; = (Vi, E;) and Hy =
(Va, E9) such that Vi NV, # @. Prove that G is connected.

Solution. We must show that there is a walk in G between any two vertices in G. Given v,w € V,
such a walk exists if both vertices are in V; or both are in V5 since H; and Hs are connected. Now
suppose that v € H; and w € Hy. Choose u € Vi N V,. By connectivity of Hj, there is a walk in G
from v to u. By connectivity of H», there is a walk in G from u to w. Concatenating those paths,
we get a walk from v to w, as desired. O

Call a graph acyclic if it does not contain any subgraphs which are cycles. A tree is a connected
acyclic graph. A disconnected acyclic graph is called a forest.

Problem 7.3.2. How many edges are there in a tree with n vertices? Prove your assertion (by
induction?).

Solution. We prove that there are n — 1 edges in a tree with n vertices by induction on n > 1.
Clearly, if n = 1 then there are 0 = 1 — 1 edges in a single vertex tree. For induction, fix n > 1
and suppose that every tree with n vertices has n — 1 edges. Given a tree with n 4 1 vertices, there
exists a vertex of degree 1 (why?). Prune this vertex and its edge from the tree to get a tree with n
vertices and hence n — 1 edges. The (n + 1)-vertex tree has one more edge, hencen = (n +1) — 1
edges, as desired. O

Problem 7.3.3. Prove that a graph G is a tree if and only if there is a unique path between any two
vertices of G.
31



Solution. First suppose that G is a tree. Since G is connected, there is at least one path between
any two vertices. Suppose for contradiction that there are two paths P, # P> joining u # v € G.
Suppose P goes fromu =wujtous tousto...tou, = vand P goes fromu = vy tovy towvg to...to
ve = v. Let i be the first index such that u; # v; and let j > i be the next index so that u; = v, for
some i < m < (. Then we have paths from u;_; to u; and (reversing part of ) from u; = v,, to
u;—1 = v;j—1. This creates a circuit, contradicting the hypothesis that G is a tree.

Now suppose that G is not a tree. Then either G is not connected (in which case there are vertices
joined by no path) or G contains a cycle upujus - - - upmug. Then upu and wotty, tm—1 - - - ugu; are two
distinct paths from v to ;. O
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8. WEEK 8
8.1. Monday. Consider the following floor plan for a building;:

We would like to know if it is possible to cross each interior wall in the building exactly once
(without teleporting).

Problem 8.1.1. (a) Turn this into a graph theory problem about a particular kind of walk.
(b) Either find such a walk, or prove that no such walk exists.
(c) What if we want to pass through the exterior walls as well?

Solution. (a) We may think of each room as a vertex, and then connect rooms with edges if they
share an interior wall. This results in the graph

for which we would like to know if there is an Eulerian walk.

(b) The vertices have degrees 2, 4, 2, 3, and 3 starting from the lower left and moving counter-
clockwise. Thus an Eulerian walk exists and it must start at one of the upper two vertices and
end at the other. Here is an example of such a walk:

7

3 2

(c) Considering the exterior walls introduces an extra vertex in the graph corresponding to the
exterior of the building joined to the bottom vertex by a single edge and joined to every other
edge by two edges. Thus the new vertex has degree 9 and the top two vertices each have
degree 5. We conclude that this graph has no Eulerian walks since more than two vertices

have odd degree.
O

8.2. Wednesday. A full binary tree is a rooted tree in which each vertex has either two children or
no children; furthermore, when there are two children, one is designated left and the other right.
Vertices with no children are called leaves.

Here are some examples:
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Problem 8.2.1. Let C,, denote the number of unlabelled full binary trees with n + 1 leaves. Prove
that Cp = 1 and

Cht1 = i CiCn—i
=0

for n > 0. Compute the first several values of C;, and draw the corresponding full binary trees.

Solution. The only full binary tree with 1 leaf is the singleton tree, of which there is 1, so Cy = 1.

Given a full binary tree T with n + 1 leaves, n > 0, let L(T) denote its left sub-tree (with root the
left child of the root of 7" and all its children in 7") and let R(7") denote its right sub-tree (similarly
defined). Then L(7T) has 1 < j < n + 1 leaves and R(T') has n + 2 — j leaves. The number of
possibilities for L(T") with j leaves is counted by C;_1, and then there are C,,,1_; possibilities for
R(T). This proves that

n+1

Cnt1 = Z Cij1Cny1-j-
=1

Changing indices with i = j — 1 gives
Cny1 = Z CiCh—;.
i=0

By the recurrence,

€1 =CoCo =1,

Cy = CyC1 + C1Cy = 2,

C3 = CyCs + C1C1 + C2Cy = 5,

Cy = CpC3+ C1Cy + C2C + C3Cy = 14,

C5 = CoCy + C1C3 + CoCy + C3C1 + C4Cy = 42.

Here is an alluring picture of the 14 full binary trees with 5 leaves. Do you see what the edges
represent?
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The numbers C), are called the Catalan numbers and can be expressed concisely as C), = %H (2:)
The standard proof of this fact uses generating functions and will not be presented here. A bijective
proof for this formula appears after we establish that some additional combinatorial structures

counted by Catalan numbers.

Problem 8.2.2. Find an explicit bijection between full binary trees with n + 1 leaves and full paren-
thesizations of n + 1 factors. (For instance, the full parenthesizations of abc are (ab)c and a(bc),
while the full parenthesizations of abcd are ((ab)c)d, (a(bc))d, (ab)(cd), a((be)d), and a(b(cd)).) This
proves that C), counts the number of full parenthesizations of n + 1 factors.

Solution. Call the factors ay,...,a,+1 and label the leaves with the factors from left to right. Call
the level of a node £ if it is k steps from the root. Begin with the largest level nodes, which are
necessarily leaves. Each is in a two-leaf subtree labeled with a; and a;41. Label such vertices” par-
ent node (a;a;+1) and delete the largest level nodes (and the attached edges). Proceed inductively
until one ends up with a parenthesization of a; - - - a,, at the root. O

It follows that (), is also the number of ways of arranging n pairs of correctly matched paren-
theses. This perspective is very important in computer science, where trees are frequently stored
via bracketing schemes.

8.3. Friday. Discussion of Todos Cuentan and exam review.
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9. WEEK 9
9.1. Monday.

Problem 9.1.1. A Dyck path of length 2n is a monotonic lattice path in [0,n]? starting from (0,0)
and ending at (n, n) which never goes above the diagonal. Prove that there are C), Dyck paths of
length 2n.

Solution. Label each step in the path (starting from (0, 0)) either E for east or N for north, and
create the associated word of length 2n in the alphabet {E, N}. Now replace each E with a left
parenthesis, and each NV with a right parenthesis. In total, there are n opening and n closing
parentheses, and the fact that the path never goes above the diagonal guarantees that at any given
position in the string, there are at least as many opening as closing parentheses. As such we getn
pairs of parentheses which are completely matched.

We claim that the set of n pairs of matched parentheses is in bijection with valid full parenthe-
sizations of n + 1 factors. We leave it the reader to decipher the following assignment and turn it
into such a bijection:

(a(be))d = ((a-(b-¢))-d) = -))) = (0)0)-

Dyck paths also give a proof of the formula

. — 1 <2n>
n+1\n

Proof. Recall that there are (27’:) monotonic lattice paths from (0,0) to (n,n). We aim to partition
the monotonic paths into n + 1 subsets of equal size, where precisely one of the subsets is the
collection of Dyck paths. This will prove that C,, = (*")/(n + 1), as desired.

We define the exceedance of a monotonic lattice path to be its number of vertical steps above
the diagonal. The exceedance of a monotonic lattice path from (0,0) to (n,n) is between 0 and
n (inclusive), and the Dyck paths are precisely those monotonic lattice paths with exceedance
0. Let P be the set of monotonic lattice paths from (0,0) to (n,n) and let E; be the set of paths
with exceednace i; then P = Ey U E; U --- U E,, is clearly a partition of P. If we can show that
|Eo| = |E1| = |E2| = -+ - = |Ey|, then we will be done.

Given a path p € E;, write p = BrAuC where r is the first right step below the diagonal and
u is the first up step touching the diagonal after . Then B is a path above the diagonal with
exceedance j < i, A is a path below the diagonal, and C is the reamining path with exceedance
i — j. Switch Br and Au to produce f(p) = AuBrC. The exceedances of A, uBr,and C are 0, j +1,
and ¢ — j, respectively. (Draw some pictures and check this!) Thus f(p) € Ej;1.

Given a path ¢ € E; 1, write ¢ = AuBrC where u is the first up step above the diagonal and 7 is
the first right step touching the diagonal after u. Define g(¢q) = BuAdC and check that g(q) € E;.
Finally, check that f : E; — E;11 and g : E;41 — E; are inverse to each other. ]

Problem 9.1.2. Prove that we can also express C), as

o - )t 20\ [ 2n
"oplln+1)! \n n+1
Solution. Both identities follow from algebra. OJ

9.2. Wednesday. A leaf of a tree is a vertex of degree 1. Suppose T is a tree with vertex set

{0,1,2,...,n—1}. The Priifer code of T is the sequence of length n—2 with entriesin {0, 1,...,n—1}

generated by the following algorithm: At step i, remove the leaf with the smallest label not equal
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to 0 and set the i-th entry of the Priifer code equal to the label of the leaf’s neighbor. After step
n — 2, the end of the algorithm, one is left with a single edge joining some node to 0.
For instance, the Priifer code of the following graph is 534543.

In your reading, you learned how to turn a Priifer code into a tree by writing down its extended
Priifer code, a 2 x n array with entries in {0,1,...,n — 1} with columns corresponding to edges.
To quote,

Each entry in the first row of the extended Priifer code is the smallest integer that
does not occur in the first row before it, nor in the second row below or after it.

One applies this procedure with initial data the second row consisting of the Priifer code with a 0
tacked on the end.

Problem 9.2.1. Draw a tree on vertex set {0,1,...,n— 1} withn =6, 7, 8, or 9. Determine its Priifer
code and write the Priifer code on the whiteboard. Then trade Priifer codes with another group
and decode into a tree. Draw the tree next to its Priifer code and check your work with the group
that made the Priifer code.

Problem 9.2.2. Which trees have Priifer codes that contain only one value?

Solution. These are the stars. Indeed, a star with i asits root and {0,1,...,n — 1} \ {i} as its leaves
has Priifer code "~ (by which we mean i repeated n — 2 times). The converse clearly holds as
well. O

Problem 9.2.3. Which trees have Priifer codes with distinct values in all positions?

Solution. These are the paths. Indeed, consider the path going from 7(0) to 7(1) to m(2) to ...to

7(n — 1) where 7 is some permutation of {0,1,...,n — 1}. At each step, the associated Priifer code
picks off one of the leaves, and these are all distinct values between 0 and n — 1. It is easy to check
the converse as well. O

9.3. Friday. Place n dots along the top of a rectangle, and place n dots along its bottom. Now
draw n non-crossing strings in the box which connect distinct points. Such a configuration is
called a Temperley-Lieb diagram on 2n nodes. Here is a Temperley—Lieb diagram on 12 nodes:

i\

[

Problem 9.3.1. Show that there are C), Temperley-Lieb diagrams on 2n nodes.
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Solution. Read the Temperley—Lieb diagram clockwise from the top left point. If a string is starting
when you reach a point, draw record an open parenthesis; if a string is ending when you reach a
point, record a closed parenthesis. This produces a function from Temperley-Lieb diagrams on 2n
nodes to well-matched strings of n opening and n closing parentheses. We leave it to the reader to
check that the function is a bijection. O

We can compose two Temperley—Lieb diagrams (on the same number of nodes) by placing one on
top of the other and gluing the strings together. This results in a new Temperley-Lieb diagram, but
possibly with some loops floating around in it. If there are k£ loops, we make the rule of deleting
all loops and placing a formal monomial ¢* next to the diagram. For instance, the composite

W IR,
a R

is computed as

which is then reinterpreted as

Problem 9.3.2. Let T'L,, denote the set of Temperley-Lieb diagrams on 2n nodes. For 1 <i <n —1,
let U; be the Temperley-Lieb diagram with all vertical strings except for a cup and a cap joining
the i-th and (7 + 1)-th nodes on the top and bottom. For instance, here is Uz in T'Ls:

U/
[

Let 1 denote the diagram with all vertical strings.

(a) Observe that 1 is a 2-sided identity for composition of Temperley-Lieb diagrams.
(b) Draw pictures to show that the U; satisfy the following relations:
» Ul =Uqforalll <i<n-1,
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» UUiU; = U foralll <i<n-2,

» U;U;_U; =U;forall2 <i<n-—1,

» U;Uj = U;U; forall 1 <14, <n — 1such that [i — j| # 1.
(c) Show that every Temperley—Lieb diagram can be written as a compositionof 1, Uy, Us, ..., U,—1.
Solution. (a) We can pull the vertical strings taught to recover the original diagram.

(b) Here we will record a picture of the second identity when i = 2 and n = 5. The others are
similar.

) U
[

DC> D

(c) This is harder, but you can do it!
]

The Markov trace is an operation on Temperley-Lieb diagrams which connects each dot on the
top row to the corresponding dot on the botoom row using auxiliary loops (on the outside of the
rectangle) and then records the number of loops, k, as ¢*. For instance, the trace of

/
[

in T'L3 is computed by forming the extended diagram

—
)

~
L

counting that only one loop was formed, and concluding that the trace is g.

Problem 9.3.3. (a) Determine the trace of 1 € T'L,,.
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(b) Determine the trace of U; € TL,,, 1 <i<mn— 1.
(c) Fix k between 1 and n, inclusive. Let C,, ;, denote the number of Temperley-Lieb diagrams

in TL,, with trace ¢*. By Problem 1, >}, C}, , = Cy,. Find recurrent and closed formule for
Ch k-

Solution. (a) The trace of 1is ¢™.
(b) The trace of U; is ¢" 1.
(c) This is a challenge problem for the class. Let me know if you figure it out!
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10. WEEK 10

10.1. Monday. Let S be our sample space (really any set) and let & = 2° denote the corresponding
collection of events (just the set of subsets of S). Recall that a probability distribution on S is a
function

P:&—10,1]

such that (1) P(S) = 1, (2) P(@) = 0, and (3) if A, B € & are mutually exclusive events (so
ANB = @), then P(AU B) = P(A) + P(B). If S is a finite set, then we can define the uniform
probability distribution on S to be the function taking A C S to |A|/|S].

Problem 10.1.1. A lottery has participants choose 5 distinct numbers from the set {1,2,...,36}.
On a prescribed date, the lottery announces a collection of 5 winning numbers. Complete the
following prompts in order to determine why the lottery does not offer a prize for having selected
only 1 winning number.

(a) What sample space is pertinent in this question? Describe it both as a collection of certain
types of objects, and in a more mathematical fashion.

(b) Is it reasonable to put the uniform probability distribution on this sample space? (Assume that
the lottery is fair.)

(c) Let B denote the event of choosing a ticket with no winning numbers. What P(B)?

(d) Let A denote the event of choosing a ticket with at least one winning number. What is A N B?
AU B?

(e) Use the axioms for a probability distribution and your answer to (c) to determine P(A).

(f) [Follow up question] Might it be reasonable to offer prizes for anyone with 2 or more winning
numbers?

Solution. (a) The sample space is the collection of valid lottery tickets. If we assume that the
lottery does not care about the order of the numbers, then we may model this sample space as
(%), the collection of 5-element subsets of 36 = {1,2,...,36}.

(b) Sure! If the lottery is fair, then each ticket has an equal chance of being drawn.

(c) Suppose the winning ticket is the set {a1, a2, as, as, a5} where the a; are distinct elements of
36. Then B = {t € (%6) | a; # t}. In other words, B is the collection of 5-element subsets of
36~ {a1,...,as}. Assuch |B| = (¥) and P(B) = () /(¥) ~ 0.45.

(d) Wehave ANB =@ and AUB = (%).

(e) It follows that P(A) = P(AUB) — P(B) =1 — (3)/(*°) ~ 0.55. If the lottery pays out 55% of
the time, then it’s not a very lucrative lottery for those running it!

O

Problem 10.1.2. What is the probability that in a random ordering of a standard deck of cards, the
ace of spades precedes the king of hearts?

(@) Rephrase this as a question about permutations of 52. What is the sample space under consid-
eration? the event?

(b) Prove that the probability of this event (under the uniform distribution) is 1/2 by producing a
bijection between the event and its complement. (Why does that solve things?)

Solution. (a) We can number the cards 1 through 52, designating the ace of spades 1 and the king
of hearts 2. An ordering of the cards corresponds to a permutation of 52, so the sample space
is X9, the set of permutations of 52. The event is

A= {7T € Y59 | 71'(1) < 7T(2)}
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(b) We have X5 \ A = {7 € ¥52 | 7(2) < w(1)}. This is in bijection with A via the function that
swaps the values of 7(1) and 7(2). Thus |A| = |B|, AU B = X5, and AN B = &. As such,

1= P(AUB) = P(A) + P(B) = 2P(A)

whence P(A) = 1/2.
U

Problem 10.1.3. Your partner invites you to play a game: they write ten distinct real numbers on
ten blank cards. The cards are shuffled randomly and placed face down on the table. You start at
the top of the deck and start revealing cards. At any point you may choose to stop turning over
cards and select the most recently revealed card. You win if your selection is the largest of all
ten numbers (both those previously revealed and those still unrevealed). Devise a strategy which
guarantees you will win this game at least 25% of the time.

The start of a solution. This is a variant on the so-called secretary problem, née fianceé problem. We can
use a stopping rule to increase our chance of winning: look at the first » cards and note the maximal
value among them, M. For the subsequent 10 — r cards, select the first one larger than M. (If the
tenth is not larger than M, select and it and bemoan your bad luck). With = 4, you will select
the largest number about 40% of the time, and this is the best r for 10 cards. A full analysis can
be found in (Sardelis and Valahas, Decision Making: A Golden Rule, The American Mathematical
Monthly Vol. 106, No. 3 (Mar., 1999), pp. 215-226). O

10.2. Wednesday.
Problem 10.2.1. Show that if A and B are independent, then so are their complements A and B¢.

Solution. Since A and B are indpendent, we know that P(A)P(B) = P(AN B). Since A°N B¢ =
(AU B)¢, we aim to show that P(A°)P(B¢) = P((A U B)¢). We now compute

P(A)P(B%) = (1 - P(A))(1 - P(B))
=1—-P(A) - P(B)+ P(A)P(B)
=1—-P(A) - P(B)+ P(ANB).

We have P(A)+ P(B) — P(ANB) = P(AU B) (a probabilistic version of inclusion-exclusion) and
thus

P(A°)P(B°) =1—- P(AUB) = P((AUB)°),
as desired. 0

Problem 10.2.2. We flip a fair coin n times. Let A be the event that the first coin flip was heads. Let
B be the event that the number of heads was even. Let C' be the event that the number of heads
was more than the number of tails. Which pairs of these three events are independent?

Solution. First, we compute the probability of each event. Thinking of the coin flips as an n-bit
binary sequence, we easily see that P(A) = 2"~ /2" = 1/2. Thinking of these sequences as subsets
of an n-element set and recalling that there are the same number of even- and odd-sized subsets
of n, we get that P(B) = 1/2. Finally, P(C) = (Zk>n/2 (Z)) /2"™. When n = 3, we may compute
this value to be 1/2, and when n = 4 itis 5/16.

The event AN B consists of flip sequences with first flip a head and total heads even. This is the
same as the first flip being heads and, amongst the subsequent n — 1 flips having an odd number
of heads. There are 2”2 such flip sequences, so P(A N B) = 2"72/2" = 1/4 and A and B are
independent as P(A)P(B) =1/2-1/2 = 1/4 as well.

The event AN C consists of flip sequences with first flip a head and more heads than tails, total.

Whenn =3, P(ANC) =3/8 # 1/4s0 Aand C are not independent in general.
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FIGURE 7. Plots of () (7/8)"® with 3 < n < 100 and 85 < n < 100.

The event B N C consists of flip sequences with an even number of heads in which heads out-
number tails. When n = 4, that means there have to be 4 heads, so P(BNC) =1/16 # 1/2-5/16,
so B and C are not independent in general. O

Problem 10.2.3. There are n players in a Go tournament. In this problem we will use probability
theory to show that for certain n it is possible for every collection of 3 players there exists another
player who has beaten them all.

(a) Suppose that the outcome of each game is random. (Perhaps the players are lazy and flip a
coin to decide the winner.) Fix a 3-subset {z, y, 2} of players and some player w notin {z, y, z}.
What is the probability that w wins against z, y, and 2? What is the probability that w loses
against at least one of z, y, 2?

(b) Suppose we have another player v’ different from w, z, y, and z. Are the results of w’’s matches
against z, y, z independent of the results of w’s matches?

(c) How many players can appear in the role of w? What is the probability that each of them loses
against at least one of z, y, 2?

(d) Use your answer to (c) and the fact that there are () 3-subsets of n to produce an upper
bound on the probability that for at least one 3-subset {z,y, z}, no player beats z, y, and =
simultaneously.

(e) What does it mean if your upper bound from (d) is less than 1? Use a computer to determine
if there are n for which this happens.

Solution. (a) There is a 1/8 probability of w winning against z, y, and z (think of this as three
heads in a row). The event of w losing at least once against z, y, z is complementary and has
probability 7/8.

(b) Yes, player w’s outcomes are independent of w'’s.

(c) There are n — 3 players who are not z, y, or z. The probability that all of them lose against at
least one of z, y, z is (7/8)" 3.

(d) This event is the union over all 3-subsets {z,y, z} of the event in (c). Thus its probability is at
most () (7/8)" % since P(AU B) < P(A) + P(B) in general.

(e) If (3)(7/8)"3 < 1, then in a positive fraction of tournaments, there exists a 3-subset of players
defeated defeated by a single player.

As it turns out, this expression is less than 1 for all n > 91, so we are certain that such a
tournament exists whenever there are 91 or more players. You can see a plot of (%)(7/8)" 2 in
Figure[7|

U

10.3. Friday.
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Problem 10.3.1 (The Monty Hall problem). A game show provides contestants with the opportunity
to win a car. There are three doors labeled A, B, and C. Behind two of the doors are goats, and
behind one of the doors is a car. For reasons not completely clear to your instructor, you hope to
select the car instead of a goat. The game proceeds in the following fashion: First, you select a
door. Next, the host reveals a goat behind one of the remaining doors. (Since there are two goats,
there is at least one goat to reveal.) You are then given the chance to switch your guess. If your
final guess is the door with the car behind it, you win the car. Question: Is it advantageous to
switch your guess?
Here are some assumptions on the problem which should remove any ambiguity:

» The probability that the car is placed behind any one of the three doors is 1/3.

» The host knows where the car is.

» If the contestant picks a door with a goat behind it at the beginning, the host opens the
remaining door with a goat before giving the option to switch. If the contestant picks the
door with the car behind it, the host opens any of the other doors with probability 1/2.

In class, we discussed a decision tree method for answering the question, but it is also possible
to think in terms of conditional proability. Suppose that you initially pick door A and then let A, B,
and C denote the events “the car is behind door A,” “door B,” and “door C,” respectively. Let M 4,
Mp, and M¢ denote the events “the host opens door A,” “door B,” and “door C,” respectively.
(a) What are P(M¢|A), P(M¢|B), and P(M¢|C)?

(b) Whatis P(M¢)? (Use the Law of Total Probability.)

(c) Suppose that the host opens door C revealing a goat. You should switch your guess to B if
P(B|M¢) > P(A|Mc). Compute these conditional probabilities (via Bayes” Law) and draw a
conclusion.

Solution. By hypothesis, P(A) = P(B) = P(C) = 1/3. If we have initially picked A and the car is
behind A, then the host will open B or C with equal probability. Thus P(Mp|A) = 1/2, P(Mc|A) =
1/2, P(My4|A) = 0. If we have initially picked A and the car is behind B or C, then the host has
only one door he can open, namely C or B, respectively. Thus P(M¢|B) = 1 and P(Mp|C) = 1.
Now suppose that the host opens door C. We want to compute P(A|M¢) and P(B|Mc). If the
tirst is larger, we should stay; if the second is larger, we should switch; and if they are equal then
it doesn’t matter whether we stay or switch. By Bayes” Theorem and the Law of Total Probability,

P(AIM) = P(Mc|A)P(A) _ 1/2-1/3
P(Mc) P(Mc|A)P(A) + P(Mc|B)P(B) + P(Mc|C)P(C)
B 1/6 _1/6
T 1/2-1/34+1-1/3+0-1/3  1/2
1
E]
and P(Mc¢|B)P(B) 1-1/3
- .
2
=3
The latter quantity is twice as large as the first, so we should switch! O

Problem 10.3.2. A student taking a true-false test always marks the correct answer when she knows
it and decides true or false on the basis of flipping a fair coin when she does not know it. If the
probability that she will know an answer is 3/5, what is the probability that she knew the answer
to a correctly marked question?
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Solution. Let K denote the event of knowing the answer to a particular problem and let M denote
the event of correctly marking that problem. We want to determine P(K|M), and do so with
Bayes’ Law. First note that the problem tells us that P(K) = 3/5, P(M|K) = 1, and P(M|K¢) =
1/2. (Here K¢ is the complement of K, the event in which the student does not know the answer.)
By the Law of Total Probability,

P(M) = P(M|K)P(K) + P(M|K°)P(K®) =1-3/5+1/2-2/5 = %.

Thus P(M|K)P(K) 1-3/5 3
P(K|M) = _ 1909
(K| M) P(M) 4/5 4
In other words, there is a 75% chance of the student knowing the answer to a correctly marked
question. O
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11. WEEK 11
11.1. Monday.

Problem 11.1.1. The digits 1, 2, 3, 4 are randomly arranged into two two-digit numbers AB and
CD. In this problem you will ultimately determine the expected value of AB - CD.

(a) If two of the digits 1, 2, 3, 4 are randomly selected (without replacement), what is their ex-
pected product?

(b) Write AB as a linear combination of the digits A and B. Similarly express C'D in terms of C
and D.

(c) Finally, use linearity of expectation and your answer to (a) to determine E(AB - CD).

Solution. (a) The potential values of the product are 2, 3,4, 6,8,12. For each such product, there
is a unique 2-element subset {a, b} C {1, 2, 3,4} such that ab is the product in question. There
are (;l) = 6 such pairs, and thus each value has a 1/6 probability of being chosen. We conclude
that the expected valueis (2+3+4+6+8+12)-1/6 =35/6 = 5.8333. ...

(b) We have AB = 10A + B and CD = 10C + D.

(c) It follows that AB - CD = (10A + B)(10C + D) = 100AC + 10AD + 10BC + BD. By linearity
of expectation,

I 42
E(AB~CD):(100+10+10+1)-3—§:%:705.8333....

0

Problem 11.1.2 (The coupon collector problem). Safeway is running a promotion in which they
have produced n coupons and you randomly receive a coupon each time you check out. You
passionately hope to one day collect all n coupons. What is the expected number of times 7" you'll
have to check out at the store in order to collect all n? There’s a very clever way to solve this
problem with linearity of expectation!

(a) Label the coupons C, Cy, ..., Cp. If n = 4, a successful collection of all 4 coupons might
look like C'y Cy C4 Cy Cy C'3. Break the sequence into segments where a segment ends when
you receive a new coupon. In the example sequence, the segments are Cy, Cy Cy, Co Cy, Cs.
Because it will make our lives easier and Kyle is a benevolent problem-writer, consider these
the 0-th, 1-st, ..., 3-rd segments (as opposed to 1-st through 4-th). Let X}, be the length of the
k-th segment, and note that k ranges from 0 through n — 1. In the example, Xg =1, X; = 2,
Xy = 2,and X3 = 1. Express T, the total number of checkouts needed to collect all coupons,
as a linear combination of the Xj.

(b) Compute py, the probability that you will collect a new coupon given that you have already
collected £ of them. After studying the geometric distribution in Lecture 5, we will learn that
E(X})) = 1/pk. Compute this value.

(c) Use your answers to (a) and (b) to determine E(T').

(d) Can you say anything about the asymptotic behavior of £(T)?

Solution. (a) WehaveT = Xg+ X1 +---+ X1,
(b) We are seeking to collect one of the n — k£ uncollected coupons out of the n total coupons, so
Pk = HT% and E(Xk) = pik = ﬁ
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(c) By linearity of expectation,

(d) It is beyond the scope of this course to prove so, but E(T') = nlogn + yn + O(1/n) where
~ = 0.577 is the Euler-Mascheroni constant.
g

11.2. Wednesday.

Problem 11.2.1. With your group, roll a pair of dice twelve times. Record the first roll on which
you roll doubles and also the total number of doubles that you roll and report these numbers to
the instructor. What is the expected number of doubles in twelve rolls? How long should it take
to roll doubles? How do these numbers compare with the class’s statistics?

Solution. We can model the sample space as 6 x 6, in which case the event of doubles is the diagonal
A = {(a,a) | a € 6}. Then under the uniform distribution, P(A) = 6/36 = 1/6. Let X be the
number of doubles out of 12 rolls. Let I; denote teh indicator variable for the j-th roll being a
double. Then E(I;) = P(I[; =1) = P(A)=1/6.Since X =1 +---+ 12, E(X) =12-1/6 = 2. We
expect two doubles to be rolled. O

Problem 11.2.2. An airline has sold 205 tickets for a flight that can hold 200 passengers. Each
ticketed person, independently, has a 5% chance of not showing up for the flight. What is the
probability that more than 200 people will show up for the flight?

Solution. Let X be the number of people who show up for the flight. We are looking for P(X >
200) = P(X = 201) + P(X =202) 4 --- + P(X = 205). Since this is a binomial random variable,
P(X =k) = (*%)(0.95)%(0.05)205~F. Thus

205 /905
P(X >200)= »_ ( . )(0.95)’f(0.05)205—’f ~ 0.02236.
k=201
We conclude that the flight will be oversold about 2.2% of the time. O

Problem 11.2.3. If the same airline consistently oversells the flight from Problem 2 at the same rate,
how many flights until we expect more ticketed passengers to show up than there are seats.

Solution. This is a geometric random variable with p = P(X > 200) ~ 0.02236. As such, the
expected number of flights until an oversold one is 1/p ~ 44.7. O

11.3. Friday. For integers a, b, we say that a divides b when an integer m exists such that b = am;
in this case we also say that b is a multiple of a and that a is a divisor of b.

Question 11.3.1. Whendoes 1 |b? =1 | b2 a|0? a|a?
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Solution. Since b = 1-b for all b € Z, we have always have 1 | b. Similarly, b = (—1) - (=b),so —1 | b
forall b € Z. Since 0 = a - 0, we always have a | 0, and sicne a = a - 1, we always have a | a. O

Problem 11.3.2. Suppose that a | band b | c. Prove thata | c.

Solution. By hypothesis, there are integers m,m’ such that b = am and ¢ = bm’. Thus ¢ =
(am)m’ = a(mm’). Since mm/ is an integer, this tells us that a | c. O

This produces a partial order on N, visualized in the following diagram.

Question 11.3.3. Where should you put 9 in the diagram?

Solution. Since 9 = 3 - 3, it goes above 3 with lines coming in from 1 and 3, and lines going up to
all multiples of 9.

Problem 11.3.4. Prove thatifa |band a | ¢,thena |b+canda |b—c.

Solution. By hypothesis, b = am and ¢ = an for some integers m,n. Thus b + ¢ = am + an =
a(m + n), and since m + n € Z we have that a | b+ c¢. Similarly, b — ¢ = am — an = a(m —n), and
sincem—neZ,a|b—c O

A natural number p > 1 is prime if its only positive divisors are 1 and p. The fundamental theo-
rem of arithmetic says that every positive integer is a product of primes, and that this factorization
is unique up to reordering of the factors. For instance, 6 = 2-3,1728 = 2-2.2.2.2.2.3.3.3 = 26.33
and 825 =3-5-5-11 = 3. 5% . 11. This probably seems like old hat, but not every number system
has unique factorization! For instance, Z[v/—5] = {a + b\/=5 | a,b € Z} supports addition and

multiplication, but

6=2-3=(1++v-5)(1—-+v-5).
Number theorists are quite interested in objects like Z[/—5], but we will limit our study to Z
where the fundamental theorem of arithmetic holds.

Question 11.3.5. Where should the prime numbers go in the divisibility diagram?
Solution. Above 1 and below everything else. O]

Problem 11.3.6. Prove that a positive integer n is prime if and only if n is not divisible by any prime
pwithl <p <./n.

Proof. First suppose that n is prime. Then it is not divisible by any positive integer except 1 and n,
and thus is not divisible by the prime numbers in question.

Now suppose that n is not prime, which case it has prime factorization n = pips - - - pr with
p1 < --- < pg all prime. Suppose for contradiction that v/n < p;. Thenn = /n-y/n < pip2 < n,
i.e., n < n,a contradiction. O
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Problem 11.3.7. Suppose that a positive integer n has prime factorization n = p{* - - - p/* with the p;
distinct primes. How many distinct positive integers are divisors of n?

Solution. The divisors of n take the form p?l . -pZ’“ with 0 < b; < a;. Since there are a; + 1 potential
values of b;, we know that n has (a1 + 1)(a2 + 1) - - - (ax, + 1) divisors. O

Problem 11.3.8. The book’s proof does a fine job of guaranteeing that prime factorizations of inte-
gers are unique, but it elides the proof that prime factorization exist. Give an inductive proof that
every positive integer has a prime factorization.

Solution. We want to show that every integer n > 2 has a prime factorization. Since 2 is prime, the
base case holds. Fix an integer n > 2 and suppose that all integers 2 < m < n have prime factor-
ization. If n 4 1 is prime, then it has a prime factorization (itself), so suppose n + 1 is composite.
Then there are integers 2 < a,b < n such that n + 1 = ab. By the strong inductive hypothesis,
both a and b have prime factorizations, and the product of those factorizations is in turn a prime
factorization of ab = n + 1. O
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12. WEEK 12

12.1. Monday. The key takeaways from §6.4 are that there are infinitely many prime numbers,
and that the prime counting function 7 (n) = |{p € N prime | p < n}| grows like n/logn. (Here we
are using log for the natural logarithm function.) The first of these results is generally attributed
to Euclid, c. 300B.C.E. Let’s look at another proof due to Filip Saidak from 2005. In order to get it
off the ground, prove the following result.

Problem 12.1.1. Let n be a positive integer. Prove that n and n+ 1 share no common divisors greater
than 1.

Solution. If a divides n and n + 1, then a divides (n + 1) — n = 1. The only positive divisor of 1 is
1. g

Proof that there are infinitely many prime numbers. Let n > 1 be a positive integer. As we have just
proven, n and n + 1 share no common divisors greater than 1. Hence the number Ny = n(n + 1)
must have at least two distinct prime factors. Similarly, N, and Ny + 1 share no common divisors
greater than 1, and thus N3 = Ny(N2+1) must have at least 3 distinct prime factors. We recursively
define Nj, = Nj_1(Ng_1+1) for k > 2 and observe inductively that /Vj has at least k distinct prime
factors. O

Note that N}, has at least £ distinct prime factors, each of which is necessarily smaller than Nj,.
It follows that w(Ny) > k.

Question 12.1.2. Compute N}, for 2 < k < 5. Is this a very effective bound on the prime counting
function?

Solution. Start withn = 2sothat Ny =2-3 =6, N3 =6-7 =42, Ny = 42 - 43 = 1806, and N5 =
1806 - 1807 = 3,263, 442. The smallest number with 5 distinct prime divisorsis 2-3-5-7-11 = 2310,
so this is not very efficient! O

The vaunted Prime Number Theorem (PNT) says that

n

m(n) ~ logn’
which means that
m(n) ~ lim m(n)logn 1
n—oomn/logn  n—oo n

The proof is very difficult and beyond the scope of this course, but we will still happily use the
result.

Problem 12.1.3. Show that lim,,_,o w(n)/n = 0 and use this to show that for any a € R,
n
m(n) ~ log(n) —a’
Solution. By the prime number theorem, 7 (n)logn/n — 1 as n — oo. Since logn — oo, we must
have m(n)/n — 0 (otherwise PNT would not hold).
Now fix a € R and observe that

m(n)(logn —a) _ w(n)logn aﬂ'(n)'

n n n
By PNT, the first term goes to 1, and we have just proven that the second term goes to 0. Thus
w(n) ~n/(logn — a). O
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It turns out that a = 1 gives the best approximation to 7(n). In the below plot, the curve on top
is the graph of n/(log(n) — 1, the middle curve is the graph of 7w(n), and the bottom curve is the
graph of n/ logn.
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12.2. Wednesday.

Problem 12.2.1. As an intrepid wagon wheel painter living in the Olde West, you strive to bring

the highest quality, most engaging, non-monochromatic spoke paintings to your customers. You

offer wagon wheels with p spokes, where p is a prime integer, painted in up to a colors, where
1<a<p—-1.

(a) As part of your preparation for painting, you have nailed a wagon wheel to the wall so that
it can’t rotate. In how many ways can you paint its spokes, assuming that each spoke gets a
single color but at least two of the spokes are different colors?

(b) When you take the wheel off of the wall and fix it to an axle, you remember that it will ro-
tate, and that your demanding customers will not accept rotated spoke paintings as genuinely
different. As you turn this particular wheel around, you notice something remarkable: all
of the rotations by multiples of 27 /p result in distinct colorings in the wheel-nailed-to-wall
sense of unique, despite the fact that there are multiple spokes of the same color (since a < p).
Is this a special property of your particular spoke painting, or is it true of all possible non-
monochromatic paintings with a colors?

(c) Use your work in (b) to determine the total number wagon wheel paintings which your cus-
tomers will accept as genuinely different. What can you deduce from the fact that this number
is an integer?

Solution. (a) If we allow all colorings with each spoke one of a colors, then there are a? colorings.
Of these, a colorings are monochromatic, so there are a” — a non-monochromatic colorings.

(b) The phenomenon is generic when the number of spokes is prime. Indeed, if we can rotate
by 27k/p (for 1 < k < p an integer) and get the same coloring, then the pattern repeats
every k spokes, and thus k divides p. Since p is prime, k£ = 1, but that means the pattern is

monochromatic.
(c) The nailed-to-the-wall count of a” — a overcounts by a factor of p (the number of ways to rotate
one pattern into others). Thus app%“ is an integer; in particular, p divides a” — a. This is Fermat’s

little theorem.
O

Problem 12.2.2. How many 6-spoke wheels can you paint non-monochromatically with up to a
colors fora = 2,3,4,5?

Comments. For a = 2, 3,4, 5, the values are 12, 127, 696, and 2, 630, respectively. These are difficult

counting problems that require a lot of care with the symmetries involved. The more general

problem of n spoke wheels with a colors is called the combinatorial necklace problem. (It is more

traditional to phrase the problem in terms of necklaces and colored beads instead of wagon wheels
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and spokes.) A nice illustration of combinatorial necklaces and links to the relevant mathematics
is available at https://www. jasondavies.com/necklaces/. O
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13. WEEK 13

13.1. Monday. The greatest common divisor d = gcd(a,b) of integers a, b is the largest positive
integer such that d | a and d | b. We say that a and b are relatively prime when they share no
divisors larger than 1, and this is equivalent to gcd(a, b) = 1.

Problem 13.1.1. Draw a divisor diagram for 84 and 105. Where does the gcd appear in partially
ordered set of divisors?

Solution. The gcd is the “greatest lower bound” (or infimum) of the common divisors of 84 and
105. O

If we know the prime factorizations of a and b, this number is easy to determine. Let {p1,p2, ..., pr}
be the set of distinct prime divisors of @ and b. Then we may write
a=pi'py® Pk,
b= pl{1p12>2 . _ka
for nonnegative integers a;, b; and

gcd(a, b) _ prlnin{al,bl}p;nin{ag,bg} N .pzlin{ak,bk}'

It is frequently the case, though, that we do not have access to the prime factorizations of integers.
In this case, the Euclidean algorithm allows us to determine the greatest common divisor. Let’s
execute the algorithm with a = 81, b = 57:

81=1-57424

57=2-2449

24=2-9+6
9=1-64+3
6=2-340.

We conclude that the final nonzero remainder, 3, is the ged of 81 and 57. Indeed, 81 = 3* and
57 = 3 - 19, so this agrees with our first method for determining ged’s.
The Euclidean algorithm can be described formally as follows:
. Assume a > b are integers (if a < b, swap them).
. Perform long division to express to express a = qb +r where 0 < r <b — 1.
. Replace a with b and b with r.
If r # 0, return to step 2; else
. if » = 0, conclude that the final nonzero remainder is gcd(a, b).

A generic run of the algorithm then looks like

Gl W IN -

a=qob+ 71
b=qri +r2
L= q2r2 + 73
Ty = q3r3 + T4

Tn—2 = Qn—1Tn—1 1+ Tn
Tn—1=qnTn +0
where 1 < r;, < ri_;1 and we conclude that r,, = ged(a, b) (since 7,41 = 0).

Problem 13.1.2. Suppose an integer x divides integers y and z. Show that forany &,/ € Z, z | ky+(z.
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Solution. We know that there are integers m, n such that y = mz, z = nx. Thus ky + ¢z = kmax +
Inx = (km + ¢n)x, exhibiting that x divides ky + ¢z since km + {n € Z. O

Problem 13.1.3. Why does the Euclidean algorithm work? Start at the end of the algorithm and
check that r,, | r,—1, then inductively check that 7, | 7 for —1 < k < n where we write 9 = b
and r_; = a for notational convenience. Conclude that r,, divides a and b. Use a similar argument
starting at the beginning of the algorithm to show that gcd(a, b) divides 71 for —1 < k < n. Why
does this prove that the algorithm produces the gcd.

Solution. The equation r,—1 = g,r, clearly exhibits that r,, | 7,—;. Fix 0 < k < n and assume for
(downward, strong) induction that r,, | r, for k < ¢ < n. The equation 7,1 = g7, +ri4+1 expresses
r,—1 as an integral linear combination of r; and rj41, both of which are divisible by r,,, hence r,
divides r;_; as well. We conclude that r,, | 7, forall -1 < k < n, including r_; = a and ro = b.

Beginning with a = ¢ob + r1, we have r; = a — gob and hence any common divisor of a and
b divides r1. In general, 7, = r;_2 — qr—17k—1, permitting a strong inductive proof that ged(a, b)
divides r;, for —1 < k < n.

We now know that r,, is a common divisor of a and b and that gecd(a, b) | r,,. This makes r, a
divisor of a and b which is at least as large as gcd(a, b), whence 7, = ged(a, b). O

Problem 13.1.4. The Euclidean algorithm gives us a way to dissect a rectangle with integer sides
into squares. Run the Euclidean algorithm to find gcd(23,13). Interpret the first step (23 = 1-13 +
10) as telling you that go = 1-many 10 x 10 squares fit inside a 23 x 13 rectangle. Figure out what
instructions the rest of the algorithm is giving you and draw a corresponding picture. At the end,
your 23 x 13 rectangle should be partitioned into squares! What is special about this procedure if
you start with consecutive Fibonacci numbers a = F, 1, b = F},?

Solution. The Euclidean algorithm runs as follows:

23=1-13410

13=1-10+3

10=3-3+1
3=3-14+0.

This corresponds to breaking a 23 x 13 rectangle into one 13 x 13 square, one 10 x 10 square, three
3 x 3 squares, and three 1 x 1 squares.

If you start with F,,1; and F,, the Euclidean algorithm has ¢, = 1 for all £ and you get the
Fibonacci approximation to the golden rectangle. O

Problem 13.1.5. Run the Euclidean algorithm when a = 45, b = 16. How is it related to the expres-
sion
45 1
— =24+ —
16 * 1+ 1
1
4+
Come up with a general procedure by which the Euclidean algorithm produces continued fraction

expressions for rational numbers of the form

2 a4+
a_ .
b ! 1

where the z; are integers.
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Solution. The Euclidean algorithm runs as follows:

45=2-16+13
16=1-13+3
13=4-3+1
3=3-1+4+0.
We have x, = qi_1. O

13.2. Wednesday. The book says that integers a and b are congruent modulo another integer m
(denoted a = b (mod m)) if a and b have the same remainder upon division by m. In your home-
work, you will prove that this is equivalent to m | a — b, and you should assume this result for the
rest of today’s class.

Question 13.2.1. Whenisa =b (mod 2)? a =b (mod 1)? a =b (mod 0)?

Solution. We have a = b (mod 2) when a and b are both odd or both even. Since 1 | a—b for all a, b,
we always have a = b (mod 1). We only have 0 | « — b when a — b = 0, i.e., congruence modulo 0
is just equality of integers. O

Problem 13.2.2. Prove that = (mod m) is an equivalence relation on Z. What are the associated
equivalence classes? How many equivalence classes are there?

Solution. Fix m and write = for congruence modulo m. This relation is reflexive (a = a) since
m | 0 = a — a. It is symmetric since when m | a — b we also have m | b —a = (—1)(a — b). For
transitivity, suppose a = b and b = ¢, in which case there are integers k, £ such that a —b = km and
b—c={¢m.Thena—c=(a—0b)+ (b—c) = (k+{)m,soa = ¢, as desired.
Write @ for the equivalence class of a modulo m. Then
a={a+km|keZ}=a+mZ
and there are exactly m equivalence classes,
0,1,...,m—1.
O
When considering the equivalence relation = (mod m) on Z, we write @ for the equivalence
class of a. (We elide m from the notation; it should be clear from context.) We call @ the congruence

class of a modulo m. We write Z/mZ = 7Z/(= (mod m)) for the set of congruence classes modulo
m.

Problem 13.2.3. Define addition and multiplication of equivalence classes in Z/mZ. Show that for
every @ € Z/mZ there exists b € Z/mZ such thata + b = 0.

Solution. We define@ +b = a + band @ - b = ab. These are well-defined operations since

(a+km)+(b+tm)=(a+b)+(k+lm=a+b

and

(a+ km)(b+ ¢m) = ab+ (al + bk + kfm)m = ab.
Since @ +m — a = m = 0, Z/mZ has additive inverses. O

Let’s now shift gear and discuss the dynamics of addition in Z/mZ. Fix @ € Z/mZ. Make a
directed grap‘fﬁ G (@, m) with vertex set Z/mZ such that (b,¢) is an edge if and only if ¢ = b + @.

5The edges in a directed graph have a source and target, indicated by an arrow. Thus the edges in a directed graph
are encoded by ordered pairs of vertices, with first entry the source, and second entry the target.
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Problem 13.2.4. Draw G(a, m) for a germane collection of @ and m.
Problem 13.2.5. Make a conjecture regarding the shape of G(a, m). Prove it.

Solution. The graph G(a, m) consists of disjoint directed cycles, all of the same size. Each cycle has
length ¢ where ¢ is the smallest positive integer such that fa = 0 (mod m). We can re-express this
number as ¢ = lem(a, m)/a. O

13.3. Friday. In §6.8 you learned that there are commutative, associative operations +, - on Z/nZ
and that + admits an inverse — such that @ — a = 0. When n is prime, everything in Z/nZ* =
Z/nZ ~ {0} admits a multiplicative inverse as well, i.e., for each @ € Z/nZ*, there exists a~! €

Z/nZ* such that@- @' = 1. We sometimes write 1/a for @' and @/b for ab .

Problem 13.3.1. Our previous version of Fermat'’s little theorem said that if p was prime and 1 <
a<p-—1,thenp|a? — a. Of course, p | 0 = 0P — 0, so this holds for 0 < a < p — 1 as well.

(a) Check that this is equivalent to a” = a (mod p) for all a € Z.

(b) Suppose a # 0 (mod p). Prove that a?~! =1 (mod p).

(c) For p > 2, what are the possible values of a?~1/2 mod p? (Note that p — 1 is even when p > 2,
so (p — 1)/2 makes sense.)

(d) For a € Z such that a 2 0 (mod p), define o,(a) (the order of a modulo p) to be the smallest
positive integer such that a®(®) = 1 (mod p). Since a?~! = 1 (mod p), we know that 1 <
op(a) < p— 1. Prove that o,(a) | p — 1.

(e*) Prove that there exists a € Z such that o,(a) =p — 1.

(f) Assume (e*) (which is a challenge problem you can try outside of class) and take a € Z such
that o,(a) = p — 1. Show that each a™, 1 < n < p—1, is in a distinct congruence class modulo p
and thus the values of a™ cycle through all the nonzero congruence classes mod p with period

p—18

Solution. (a) The congruence a” = a (mod p) means that p divides a” — q, as desired.

(b) If a # 0 (mod p), then a has a multiplicative inverse modulo p. Multiplying both sides of the
congruence by this inverse results in ¢! = 1 (mod p).

(c) Working in Z/pZ (and dropping the bars from our notation), letb = a1/, Then b?> = a?~! =
1, whence 0 = b?> — 1 = (b+ 1)(b— 1). Thus b = +1.

(d) Firstlet o = o,(a) and use the division algorithm to write p — 1 = go+r where 0 < r < o. Then
qo=p—1-randthus1 =19 = (a°)? = a%° = o~ 1~". Multiplying by a” we geta” = a?~! = 1.
Since o is the minimal positive integer such that «® = 1, we know that » = 0, whence o | p — 1,
as desired.

(e) We will leave this is a challenge problem — it’s hard, but important!

(f) Take1 < m < n < p—1andsuppose a™ = a" € Z/pZ. Then1 = a"~™ where 0 < n—m < p—2.

Since op(a) = p — 1, we must have n — m = 0, i.e., n = m. Since the values of a" with

1 < n < p— 1 are distinct, there are p — 1 of them, and they all live in Z/pZ ~. {0} (which has
size p — 1), we get that Z/pZ ~ {0} = {a" |1 <n <p—-1}.

O

Problem 13.3.2. Make a multiplication table for Z/7Z*. Select a congruence class and circle all its
occurrences in the table. Observe that this is a solution to the non-capturing rooks problem on a
6 x 6 chessboard. Does it work for other congruence classes? For Z/pZ* and (p — 1) x (p — 1)
chessboards in general? Why?

Proof. This works in general because with fixed a,c € Z/pZ*, there is a unique b € Z/pZ* such
that ab = ¢. (Indeed, b = ¢/a.) O

An algebraist would say that Z/pZ* is a cyclic group of order p — 1.
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Problem 13.3.3. How many squares are there mod p? i.e., how large is {7 | T € Z/pZ*}? What is
the probability that 22 = a (mod p) will have a solution? Suppose 22 = a (mod p) has a solution;
how many solutions does it have? In the diagonal of the multiplication table for Z/pZ*, why does
1 always and only appear in the top left and bottom right corner?

Proof. The squaring function is 2-to-1 onto its image, so its image must have size (p — 1)/2. Thus
1/2 of the equations #? = a (mod p) have solutions (for varying 1 < a < p — 1).
The final observation is just that 12 = 1and (p — 1)? = (-1)? = 1. O

Problem 13.3.4. Your vitamin regimen requires you to take Doctor Snoggleswarf’s Health Elixir ®
every five days. You take the first dose in the bottle on a Sunday and the final dose on a Thursday.
You're not sure how many doses you took, but you know that there are at least 50 doses in a bottle.
What is the minimum number of doses you took?

Solution. Number the days 0 through 6, starting with Sunday, and note that Thursday corresponds
to 4. You take the n-th dose on the day corresponding to the congruence class of 5(n — 1) modulo
7. Thus we are looking for the minimum n > 50 such that 5(n — 1) =4 (mod 7). Adding 5 to both
sides, this becomes 5n = 2 (mod 7). The multiplicative inverse of 5 mod 7is 3 (since 3-5 =15 =1
(mod 7)), and thus n = 6 (mod 7). Recalling that 50 = 1 (mod 7), we see that n must be 55. O
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14. WEEK 14

14.1. Monday. Suppose n = pi* - - - p* for positive integers a; and distinct primes p;. Recall that
¢(n) is the number of positive integers smaller than n and relatively prime to n. We claim that

¢(n) =n(l =1/p1)(1 =1/p2) -~ (1 = 1/pg).
To prove this, we count the number of positive integers which are at most n and are not relatively
prime to n. This is the case if and only if one of the p; divides n. Of course, there are n/p; positive
integers < n and divisible by p;, so itis tempting to guess that ¢(n) = n—(n/p1+n/p2+---+n/px),
but inclusion-exclusion tells us we need to be more careful with numbers which are divisible by
multiple primes. The correct formula is

¢(n):n—zﬁ+ Z L Z L-i—---:i: n

1<i<k Di 1<iy <ia<k Di1Pis 1<y <ig<iz<k pzlpung Di1Pis - - 'plk

where the signs alternate and the final sign is + if k is even and — if k£ is odd. Factoring out an n
and thinking deeply about the distributive law, we see that this is the same as

o= D)) (D) =162

What a remarkable formula! For instance, if n = 6160 = 23 - 52 - 7- 11, then
$(6160) = 6160(1 — 1/2)(1 — 1/3)(1 — 1/5)(1 — 1/7)(1 — 1/11) = 1280.

Also note that there is a probabilistic interpretation of this formula. The probability that an integer
between 1 and n is relatively prime to n is

i)

Fascinatingly, the probability only depends on the primes dividing n, and it suggests an alternate
proof of our formula.

Problem 14.1.1. Let n be our sample space with uniform distribution. Define the event N D; to be

the set of r € n such that p; 1 .

(a) Whatis P(ND;)?

(b) Let RP be the collection of r € n which are relatively prime to n. Check that RP = ND; N
NDoN---NNDg.

(c) Argue that the events N D; are independent and thus P(RP) = P(ND)--- P(NDy). Note
that this is equivalent to the above formula for ¢(n).

Solution. (a) Let’s first consider the complementary event of r € n divisible by p;. These are
precisely pi, 2p;, 3pi, - . ., (n/pi) - pi, so there are n/p; such integers. As such, [ND;| = n —n/p;
and

n—n/pi _, 1
n Di

(b) In order that gcd(r,n) = 1, r and n must share no common divisors. This is the case if and
only if p; 1 r for all prime divisors p; of n. This in turn is the intersection ND; N --- N NDy.

(c) These events are independent if and only if their complements are independent. (Check this!)
A number is divisible by p1, ..., px if and only if it is divisible by p; - - - px. The probability of
the latter event is

P(ND;) =

n/(p1- - pk) 1

n pLeDr
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This is equal to
o1
P PE
the product of the individual events. This proves independenceﬂ

14.2. Wednesday.
Question 14.2.1. Solve the system of congruences

2r =5 (mod 7)

3r =4 (mod 8).
Solution. First multiply the first congruence by the mod 7 inverse of 2, which is 4, to get z = 6
(mod 7). Then multiply the second congruence by the mod 8 inverse of 3, which is 3, to getz = 4
(mod 8).

Since 7 and 8 are relatively prime, Sunzi’s theorem applies, there is exactly one solution 0 <
To < 7 -8 = 56 and all other solutions are of the form xy + 56n for some n € Z. The solutions to
x =4 (mod 8) between 0 and 55 are

4,12, 20,28, 36, 44, 52.
The only one of these satisfying = 6 (mod 7) is 29 = 20. Thus all solutions are of the form
20 + 56n, n € Z. O
Problem 14.2.2. What is the remainder when you divide 1353 by 1728? (Hint: 1728 = 64 - 27.)

Solution. The remainder under consideration is the unique r such that 0 < r < 1728 and r = 1353
(mod 1728). Such an r also satisfies the congruences

r =135 (mod 64)
r=135% (mod 27).

Since 135 = 7 (mod 64), we know that 1352 = 72 = —15 (mod 64) and 135% = —15-7 = —105 = 23
(mod 64). Similarly, since 135 = 0 (mod 27), we have 135 = 0 (mod 27). Thus we may rewrite

the system of congruences as

r =23 (mod 64)

r=0 (mod 27).
By the second congruence, we know that r is of the form 27k for some integer k. Since gcd(27,64) =
1, we know that 27 has a multiplicative inverse mod 64. Running the extended Euclidean algo-

rithm, we find that 19 is its inverse, whence k£ = 19 - 23 = 437 = 53 (mod 64). Thus r = 27 - 53 =
1431. (|

Recall that the Fermat-Euler Theorem is a generalization of Fermat’s Little Theorem which

states that
a®™ =1 (mod n)
when ged(a,n) = 1. We will prove a special case of this theorem in which n is the product of k
distinct primes, n = pips - - - pg. In this case, ¢(n) = (p1—1)(p2—1) - - (pr—1). Let¢; = ¢(n)/(pi—1)
fori=1,2,...,k Then
a®™ = (P 1)% =1% =1 (mod p;)

for all i. We see then that = a®(™ is a simultaneous solution of the congruences

=1 (modpi),z=1 (modps),...,z=1 (mod pg).

"For full independence, we would need to check this for any subset of prime divisors, but the argument is the same.
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But z = 1 is another solution! By Sunzi’s theorem, it follows that a®™ =1 (mod n). O

Problem 14.2.3. How can the above argument be extended to the case in which n = p{*---p}*
where the p; are distinct primes and a; > 1?

Solution. The extension is possible and hinges on considering congruence classes modulo p}. For
variety’s sake, here is a totally different method:

Enumerate the integers between 0 and n which are relatively prime to n: 1, @2,..., 2. If
az; = az; (mod n), then, multiplying by a~! mod n gives z; = x; (mod n). This means that
multiplication by a permutes the x;’s. As such,

¢(n) ¢(n) $(n)
T; = H ax; = a®™ H x; (mod n).
i=1 i=1 i=1
Multiplying by ([]z;)~! mod n gives 1 = a®™ (mod n), as desired. O
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