Probability Lecture 1
MATH 113
Fall 2017

1 First Lecture

Definition 1.1. We think of a sample space S as the set of all possible outcomes of an ‘experi-
ment’ or observation. An outcome is an element of the sample space.

Example 1.2. If we are rolling a 6-sided die, S = {1,2,3,4,5,6}. If we are flipping a coin two times,

S={HH,HT,TH,TT}. If we are playing Minesweeper, S = {Die, LiveDie, Live LiveDie, Live Live Live Die, . . .}.

Definition 1.3. An event F is a subset of the sample space, thought of as a collection of outcomes.

Example 1.4. When we are rolling a 6-sided die, if E is rolling an even number, then F = {2, 4,6}.
If H ={4,5,6}, then one way to describe H is ‘rolling higher than 3.’

There may be more than one way to describe the same event, and the same description might
correspond to different events if the sample space is different.
Since events are sets, we can do the usual things to them.

Definition 1.5. The union of two events A, B is the event A U B, which can be described as ‘A
or B.” The intersection of A, B is AN B, ‘A and B.” The complement of A is A° ‘not A, or
‘A doesn’t happen.’

Definition 1.6. () is called the null event (it never happens) and S is the certain event (it
always happens).

Definition 1.7. Two events A, B are called mutually exclusive if AN B = ().
Definition 1.8. Given a sample space S, a probability distribution is a map
P : {events} — [0, 1]
such that
) P(S) =1, P(§) =0
ii) If A and B are mutually exclusive, P(AU B) = P(A) + P(B)
We will usually call P(E) the probability of E.

Definition 1.9. A sample space along with a probability distribution is called a probability
space. If every outcome is equally likely, it is called a uniform probability space. In a uniform
probability space where |S| < oo, P(E) = |E|/|S].

Some properties of probability distributions follow directly from set theory!
Proposition 1.10. i) If AC B, P(A) < P(B).

ii) P(A) =1— P(A°)

iii) P(AUB) = P(A)+ P(B)+ P(ANB)

iv) PLAUB) 4+ P(A°NB°) =1
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v) P(ANB)+ P(A°UB®) =1
Here is how we might prove i):

Proof. Suppose A C B. Then AN B\A =0. So P(B) = P(A) + P(B\A). But P(B\A) > 0, so
P(B) > P(A). O

Example 1.11. Suppose we have a standard deck of 52 cards, with 13 cards of each suit: hearts
O and diamonds ¢ (both red), and clubs & and spades # (both black). Suppose we have shuffled
the deck so that the cards are in random order, and we pick two cards off the top. What is the
probability that the first two cards are both red?

Let’s call R the event that the first two cards are red. The order of the cards is random, so any
pair of cards is equally likely. Therefore P(R) = |R|/|S|. Here are two different ways to solve this
problem; there are doubtless many more.

There are 52 possible first cards, and then 51 possible second cards, so the total number of outcomes
is 52 - 51. There are 26 red cards, so there are 26 - 25 outcomes in R and P(R) = 252° = 12752.

~ 5251
Alternatively, there are (522) ways to pick two distinct cards out of the deck. There are (226) ways
52 26!
to pick red cards, so P(R) = () = 2pa — 2625 _ 25

(226) 21501 52:51 T02°

Just as in combinatorics, if you want to check your work, count it in two different ways and see if
you get the same answer.

2 Second Lecture

Let’s start with an example.

Example 2.1. Alisha and Bachir each sit in a row of 7 chairs, choosing their seats at random.
What is the probability that they don’t sit next to each other?

There are 7 -6 ways to sit. We could count all the different ways to sit so that there is at least one
seat in between them. If A is in the first or last spot, B has 5 choices for where to sit. Otherwise
B has only 4 choices, since A plus one seat on each side takes away 3 out of the 7 spots. Therefore
there are 2-5+5-4 = 30 different ways for the pair to sit not next to each other, and the probability

of them not sitting next to each other is % = %

Alternatively, it’s perhaps easier to count the different ways for them to sit together and then take
the complement. In this case, there are 6 ways we can choose a spot for the pair and 2 ways they
can sit in that spot (AB or BA) so the probability we want is 1 — % =1- % = %

Keep in mind that it’s sometimes easier to count a complement. This can be a good way to check
your answer.

Definition 2.2. If P(AN B) = P(A) - P(B), then we call A and B independent relative to
P. This is different than the colloquial meaning of independent. Unless independence is explicitly
given in the problem, you have to prove it. Be suspicious of your intuition, because it is often
wrong!

Example 2.3. Suppose we have an unfair coin, so the probability of flipping heads is always 0.75.
What is the probability of getting 4 heads in a row? 4 tails in a row? exactly 2 heads out of 4 flips?

Notice this is NOT a uniform probability space. However, each flip has the same probability of
being heads as the flip before it. Effectively, the problem as stated is asserting that flipping heads
on the first, second, third, or fourth flip are all independent of each other.
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We can model this with what I call a probability tree. This is just a visual organizer, not
a mathematical object. It’s not the only way to solve this, but I like it! Each level in the
tree will be an independent event, with branches labelled with probability. To calculate, find

the right leaves, multiply the probabilities that go down to those leaves, and add them all up.
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Notice that we could also compute the last probability by (;1) (%)2 (i)Q.

Example 2.4. Suppose that we draw a number from the set {1,2,...,49} at random. Let F
be ‘picking a number divisible by 5’ and let F be ‘picking an even number.” Are these events
independent?
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We can construct a uniform probability space to solve this, where F' = {5,10,...,45} and F =
{2,4,...,48}. Then |S| =49, |F| = |2 =9, |E| = |£| =24, and |[FNE| = |£] = 4, so

5 2 10
P(F) = 4, P(E) = 33, P(F)- P(E) = 22} and P(FNE) = 5. But 4 # 53 = 216 o these

49> 49° 492 492 2401
events are NOT independent.

This is how you prove that things are independent!

3 Third Lecture

Recall that events A, B C S are independent when P(A)P(B) = P(A N B). What’s happening
when events are not independent?

Definition 3.1. Let A, B C S be events and assume P(B) > 0. Define P(A|B) := P(ANB)/P(B).
Then P(A|B) is called a conditional probability and read “the probability of A given B.”

Note that A and B with P(B) > 0 are independent if and only if P(A|B) = P(A). Since P(A|B) is
the probability that A happens given that B happens, we see that A and B are independent when
the occurrence of B does not make the occurrence of A any more or less likely.

Example 3.2. We toss a fair coin four times. We don’t see the results, but someone who does
truthfully tells us that at least two of the tosses were heads. What is the probability that all four
tosses were heads?

To answer this question, we must find P(A|B) where A is the event “all four tosses are heads” and
B is the event “at least two tosses are heads.” Note that AN B = A, so P(A|B) = P(A)/P(B).
Of course, P(A) = (1/2)* = 1/16. Meanwhile, B is the disjoint union of the events “exactly two
heads,” “exactly three heads,” and A. Thus

111

4 4
P(B):(l?g+(1i’>g+16_16.

We conclude that P(A|B) = 1/11.

Example 3.3. Let n = {1,2,...,n} and let 7 : n — n be a randomly selected permutation. Let
A be the event that 7(1) > 7(2). Let B be the event that 7(2) > 7(3). What is P(A|B)? Are A
and B independent events?

Clearly P(A) = P(B) = 1/2. Note that AN B is the event that 7(1) > m(2) > 7(3). Since there
are 3! = 6 orderings of 3 numbers, P(ANB) =1/6. Thus P(A|B) = P(ANB)/P(B) = 1/3. Since
P(A) =1/2 # 1/3, we conclude that A and B are not independent.

It is relatively intuitive that the events of Example 3 are not independent. After all, if 7(2) > m(3),
then 7(2) is “on the big side,” so it will be harder for it to be smaller than 7(1). But be careful
in applying this sort of reasoning. Intuition can easily lead us astray in probability theory, as the
following example demonstrates.

Example 3.4. During the 2016 Renn Fayre softball tournament, Professor Fim Jix had a higher
batting average than Professor Pavid Derkinson. The same is true of their batting averages during
the 2017 tournament. Does it follow that Jix’s cumulative 2016-17 batting average is higher than
Derkinson’s?

Counterintuitively — but unsurprisingly given the setup — the answer is NO, not necessarily. Indeed,
consider the following statistics.
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2016 2017 2016-17

hits 3 24 27

Jix at bats 10 60 70
average .300 .400 .386

hits 10 3 13

Derkinson at bats 30 5 35

average .333  .600 371

We see that Derkinson has higher batting averages each season, but Jix has the higher cumulative
batting average!

This counterintuitive phenomenon is pervasive and important enough to merit a name: Simpson’s
paradozr. Note that there is no real paradox here, only something that goes against our intuition.
In order to put a finer point on how and why Simpson’s paradox arises, we turn to Bayes’ Theorem.

Theorem 3.5 (Bayes’ Theorem). Let A and B be mutually exclusive events (AN B = &) such
that AUB =S and P(A)P(B) > 0. Then for any event C,

P(C) = P(C|A)P(A) + P(C|B)P(B).

We can interpret this theorem as saying that the probability of C' is the weighted average of its
conditional probabilities. (Here P(A) and P(B) are the weights. Note that the hypotheses imply
that P(A) + P(B) = 1, so this really makes sense as a weighted average.)

Proof. Note that AN C and B N C are disjoint and (ANC)U (BN C) = C. Thus P(C) =
P(CNA)+ P(CnN B). Meanwhile,

P(C|A)P(A) + P(C|B)P(B) = P(E(Z)A) P(If(;)B)

=P(CNA)+P(CnNB).

P(A) + P(B)

We conclude that the two quantities are equal. O

In the case of Example 5, we get the following clearer picture of our softball heroes’ batting averages.
Let Hit s be the event of Jix getting a hit in 2016 or 2017 and similarly define Hitp to be the event
of Derkinson geting a hit in either season. Let Jog1g denote Jix’s at bats in 2016, and let Jog17
denote his bats in 2017. Let Dygp16 denote Derkinson’s at bats in 2016, similarly define Dog17. Then
by Bayes’ Theorem (moral exercise: check that the hypotheses hold!),

P(HitJ) = P(HitJ |J2016)P(J2016) + P(Hitj |J2017)P(J2017), and
P(Hitp) = P(Hitp |Dag16) P(D2016) + P(Hitp |D2o17) P(D2017)-

In the setup of Example 5, we know that all of the “J” conditional probabilities are smaller
than their matching “D” conditional probabilities, but we have no control over how the “weights”
P(J2016), etc. compare. It turns out they can spoil our intuition and result in the “paradox” of
P(HitJ) > P(HitD).

We conclude this lecture by considering how to generalize independence and Bayes’ Theorem when
there are more than two events. For independence, the right generalization is the maximally strong
one.

Definition 3.6. Events A;,..., A, are independent if for any nonempty set I = {iy,...,ix} C

{1,...,n},
P(A;,N---NA;)=P(A;) - P(A;,).
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We get the following generalization of Bayes’ Theorem via a completely analogous proof. (Moral
exercise: check the details.)

Theorem 3.7. Let Aq,..., A, be events in the same sample space S such that Ay U---UA, =5
and A; N Aj =@ foralli # j. Let C C S be any event. Then

P(C) = P(C|A)P(Ar) + -+ + P(ClAn) P(Ay).

4 Fourth Lecture

In this lecture, we will study random wvariables and expected value. By the end of it, we should
be able to precisely formulate and answer questions such as “How much can I expect to win if I
play the lottery?” and “What is the expected number of fixed points for a random permutation?”
Throughout, P is a probability distribution on a finite sample space S.

Definition 4.1. A random variable is a function X : S — R.

In other words, a random variable is some way of assigning numbers to elements of a sample space.
Note that we can add and multiply random variables X, Y on the same sample space, and we can
also scale random variables by a real number. For s € S and ¢ € R these operations are given by
the rules
(X +Y)(s) = X(s)+Y(s),

(XY)(s) = X(s)Y (s),

(cX)(s) = c- (X(s)).
We can also assign an expected value (also called expectation, average value, or mean) to every
random variable.

Definition 4.2. Let X : S — R be a random variable and let X (S) = {X(s) | s € S} denote the
image of X. Then the number

Y v PX =y

yeX(S)

is called the expected value of X on S. Here P(X = y) is shorthand for the probability of the event
{s € S| X(s) =y}, i.e. the event that random variable X takes the value y.

In other words, F(X) is the weighted average of the values X takes, with weights given by the
probability that X takes the corresponding value.

Example 4.3. A lottery offers $1 tickets on which you choose six distinct numbers between 1 and
48, inclusive. The lottery announces winning numbers and if your ticket matches all the winning
numbers (irrespective of order) you get $1,000,000; otherwise you get nothing. Expected value
allows us to at least partially answer the question “Should you play this lottery?”

Let S be the sample space of 6-element subsets of 48 = {1,2,...,48}. Define X : S — R such
that X(s) = —1 is s is not the winning ticket (because you've then lost your $1 investment) and
X(s) = 999999 if s is the winning ticket (the million dollar prize minus the ticket cost). Then
X(S) ={-1,999999} and the expected value of X is

(468) —1 1
E(X)=—-1- 27— +999999 - = ~ —0.918.
(s) (s)
This means that if you play this lottery many many times, then in the long run you can expect to
lose about 92 cents each time you play, so it’s not a good investment.
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Expected value has an unexpected property: linearity. For those who have experience with linear
algebra, this literally means that E, as a function from the R-vector space of random variables to
R, is a linear transformation. If you don’t speak that language yet, consider the following simply
stated theorem as a definition of the term.

Theorem 4.4. Let X,Y : S — R be random variables and let ¢ € R. Then
E(X+Y)=EX)+ E()

and
E(cX)=cE(X).

Linearity of expected value is an extremely powerful tool. We will use it to give a simple proof of
the following remarkable fact.

Theorem 4.5. The expected value of the number of fized points in a randomly selected permutation
ofn={1,2,...,n} is 1.

Proof. Recall that a permutation 7 has i as a fixed point if 7(i) = ¢. For 1 < i < n and 7 a
permutation of n, let X;(7) = 1 if w(i) = ¢ and let X;(m) = 0 otherwise. Define X := X; + Xo +
-+« + X,. Then X() is equal to the number of fixed points of m and we are trying to find F(X).
By linearity, it suffices to find F(X;) for each i and then add up the values.
For a random permutation 7 of n, 7(7) is equally likely to take any of the values in n. Thus
P(X;=1)=1/nand P(X; =0) = (n—1)/n. As such,

n—1

1 1
Z 40 ==
n n n

E(X;)=1-:

for each 1 <7 <n. Thus

n

E(X):ZE(Xi)zzlzn%:L
i=1

. n
=1

O]

Note that Theorem 6 holds for any natural number n, so we say that the expected number of fixed
points of a permutation of a finite set is 1.

5 Fourth Lecture Supplement

In this supplement to Lecture 4, we’ll look at another application of linearity of expectation, and
then provide the promised proof of linearity. Recall that linearity is the following statement.

Theorem 5.1. Let X,Y : S — R be random variables and let ¢ € R. Then
E(X+Y)=EX)+ E(Y)

and
E(cX)=cE(X).

Example 5.2. Consider the sample space S = 6 x 6 of two rolls of a fair 6-sided die. Define the
random variable X : S — R to be the sum of the two rolls. We will compute the expected value of
X in two ways: first, via the definition of expectation, then via linearity of expectation.

The sum of two rolls is any integer between 2 and 12, inclusive, so X (5) = {2,3,...,12}. We need
to compute P(X =2), P(X =3), ..., P(X =12).
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We can only have X = 2 if both rolls take the value 1, so P(X = 2) = 1/6% = 1/36. We can get
X = 3 only with rolls (1,2) and (2,1), so P(X =3) =2/36. For X =4 we have rolls (1,3), (2,2),
(3,1),s0 P(X =4) = 3/36. For X = 5 we have rolls (1,4), (2,3), (3,2), (4,1), so P(X =5) = 4/36.
For X = 6 we have rolls (1,5), (2,4), (3,3), (4,2), (5,1), so P(X = 6) = 5/36. For X =7 we
have rolls (1,6), (2,5), (3,4), (4,3), (5,2), (6,1), so P(X =7) =6/36. For X = 8 (now things get
interesting), we have rolls (2,6), (3,5), (4,4), (5,3), (6,2), so P(X =8) = 5/36. For X =9 we
have rolls (3,6), (4,5), (5,4), (6,3), so P(X =9) = 4/36. For X = 10 we have rolls (4,6), (5,5),
(6,4), so P(X = 10) = 3/36. For X = 11 we have rolls (5,6) and (6,5), so P(X = 11) = 2/36.
Finally, for X = 12 we have the single roll (6,6) so P(X = 12) = 1/36. We conclude that
1 2 3 4 ) 6 ) 4 3 2 1
E(X) —236 +336 —1-436 +536 +636 —1-736 +836 —|—936 —1-1036 +1136 +1236
252
36
=T.

Linearity provides a much less labor intensive way to compute the expected value of X. Define
X1 : S — R to be the value of the first roll, and X5 to be the value of the second role. Then
X = X1 + Xy, so E(X) = E(X;) + E(X2). Since each roll is no different from the other, we
have F(X;) = E(X2), and thus E(X) = 2E(X;). Now it is quite easy to compute E(X;) since

P(X;=1)=P(X; =2)=---=P(X; =6) = 1/6. Thus
1 1 1
EX)=1-4+2-4+---+6=
(1) 6+ 6+ +66
142446
N 6
_6-7/2
6
_T
=5

We conclude that E(X) =2-7/2=7.

We now proceed to the proof of Theorem 1 for which we will need the following equivalent formu-
lation of expected value.

Lemma 5.3. If X : S — R is a random variable, then
E(X)=>_ X(s)P(s).
ses

(Here we are abusing notation and writing P(s) for P({s}).)

Proof. For each y € X(9), let X~y :={s€ S| X(s) =y}. Then

ZX(S)P(S) = Z Z X(s)P(s) (grouping like terms)

ses yeX(S) seX 1y

- Z Z yP(s) (since X (s) =y for s € X 1y)

yeEX(S) seX—1y

= Z y Z P(s) (factoring).

yeX(S) seX—1ly

It remains to show that > .y, P(s) = P(X = y), but this follows from the axioms for a
probability distribution since (J,cx-1,{s} is a partition of the event {s € 5| X(s) = y}. O
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Proof of Theorem 1. Given the lemma, the proof is an exercise is tracing through definitions. We
will prove the first statement and leave the second one as a moral exercise for the reader.
We have

E(X+Y)=> (X+Y)(s)P(s) (Lemma 3)
s€S
= ZX(S)P(S) + Z Y (s)P(s) (definition of X +Y and distribution)
ses seS
=FE(X)+E(Y) (Lemma 3 twice),
as desired. O

6 Fifth Lecture

Remember that a random variable X : S — R assigns a value to each outcome in a sample space.
Say we’re running an experiment, and all we care about is whether it succeeds or not. We can
model this with a Bernoulli random variable X, where X = 1 if the experiment is a success and
X = 0 otherwise. In this case P(X = 1) is usally denoted p and P(X =0) as ¢ =1 —p.

If we do a sequence of independent experiments, each of which results in success with probability
p and failure with probability ¢ = 1 — p, and we are interested in the number of successes we can
model this with a binomial random variable.

Example 6.1. We have a (possibly unfair) coin, which lands on heads with probability p and tails
with probability ¢. If I flip the coin 3 times, what is the probability of getting exactly two heads?
Let X be the number of heads out of 3 flips. Then

3
P(X=2)=p-p-q+p-q-p+q-p-p= <2>p2q-

This is why X is called a binomial random variable. If instead I flip the coin n times, the probability
of getting exactly k£ heads is

P(X =k) = <Z> P

Additionally, notice that

Y P(X=k) =) <Z>pkq"_’“ =(p+q"=1

k=0 k=0

by the Binomial Coefficient Theorem, so all the probabilities sum to 1 as we expect.
To find the expected number of heads after n flips, we can make our lives easier by using the
linearity trick. X = I + Is + ...+ I,, where

1 if the coin is heads on the jth flip
J= .
0 otherwise

These I; are called indicator random variables because they indicate when a certain condition
is met. Then for any j,

E[X]|=E[L]+ E[L]+...+ E[,] =np.
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If we graph the probabilities associated with a binomial random variable, they have a particular
shape.

Example 6.2. If n = 10 and p = 3, then P(X = k) = (10) (%)10-

k
250 e
200 x
As n gets bigger, this approaches a bell curve,
1501 or Gaussian distribution. It is appropriate to ap-

proximate the probability distribution of a bino-
mial random variable with a Gaussian distribu-
tion if n is large enough (usually when np and ng
are both significantly larger than 10).

100

50

0t 2 4 6 8 10
Graph of (lko) =P(X =k) 210

If we again run a series of independent experiments, but we are interested in the number of attempts
needed to obtain the first success, we can model this with a geometric random variable X, where
X = k means that it takes k trials for the first success. Since succeeding for the first time on the
kth try means failing on all tries up to k — 1, P(X = k) = ¢*~'p. Do all these probabilities still
sum to 17

You may have seem the trick in 112

o0

; 1
Zrlzl+r+r2+r3+...:17 if |r| < 1.
i=0 -r
Notice that
E:PCYZk)=§:f”p=p+@p+fp+“.:pﬂ+q+q”+“)=p<1_q):p:ﬂ

k=1 k=1

Example 6.3. We have a fair twenty-sided die. What is the probability that I roll a critical hit
(20 on the die) within 6 rolls?
This is P(X < 6) where p =1/20 and ¢ = 19/20. Then

PX<6)=PX=1D)4+PX=2)+...+ P(X =
_ L1 1 19V L 19)
20 20 20 20 20 20

~ 0.265

)
EEAUARN S U |
20 20 20 20 20

What is the expected number of rolls before I roll a 207 Intuition says that if I have a 1/20 chance,
then I’ll probably roll one every 20 rolls. Through a similar infinite series trick to the one above,

> 1 1
BE[X] =) kP(X =k) = p+2gp+3¢°p+4¢> + ... = p(1+2¢+3+4¢* + .. ) =p | —— | ==
k=1 (1-q)? p

so in this case the math confirms our intuition.
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