MATH 113: DISCRETE STRUCTURES HOMEWORK DUE FRIDAY WEEK 6

Question 1. How many permutations of an *n*-element set have exactly one fixed point? Take an integer *k* such that $1 \le k \le n$; how many permutations of an *n* element set have exactly *k* fixed points?

Question 2. What is wrong with the following inductive "proof" that $n_i = (n - 1)!$ for all $n \ge 2$? For n = 2 the formula holds, so take some $n \ge 3$ and assume that $(n - 1)_i = (n - 2)!$. Let π be a permutation of $\{1, 2, ..., n - 1\}$ with no fixed point. We want to extend it to a permutation π' of $\{1, 2, ..., n\}$ with no fixed point. We choose a number $i \in \{1, 2, ..., n - 1\}$, and we define $\pi'(n) = \pi(i)$, $\pi'(i) = n$, and $\pi'(j) = \pi(j)$ for $j \ne i, n$. This defines a permutation of $\{1, 2, ..., n\}$, and it's easy to check that it has no fixed point. For each of the $(n - 1)_i = (n - 2)!$ possible choices of π , the index ican be chosen in n - 1 ways; therefore, $n_i = (n - 2)! \cdot (n - 1) = (n - 1)!$.