PROBLEM 1. When is $a \equiv b \pmod{2}$: $a \equiv b \pmod{1}$: $a \equiv b \pmod{1}$? $a \equiv b \pmod{2}$?

Problem 2. What are the last two digits of $99^{100000^{100000}+2021}$?

PROBLEM 3. Recall the equivalence relation from the mini-lecture: having fixed $n \in \mathbb{Z}$, for $a, b \in \mathbb{Z}$, we say $a \sim b$ if a - b = kn for some $k \in \mathbb{Z}$. In other words, $a \sim b$ if and only if $a \equiv b \pmod{n}$. Take n > 0, for convenience.

- (i) Show that \sim is an equivalence relation.
- (ii) State the division algorithm for integers *a* and *n*, and use it to determine the number of equivalence classes for \sim .

PROBLEM 4. Suppose $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$.

- (i) Prove that $a + b \equiv a' + b' \pmod{n}$.
- (ii) Prove that $ab \equiv a'b' \pmod{n}$.

PROBLEM 5. (If you have extra time.) Let $V := \{0, 1, \dots, n-1\}$ for some positive integer n, and fix $a \in V$. Let G(a, n) be the directed graph with vertex set V and with an edge from b to c if $c = b + a \pmod{n}$. Draw this graph for various a and n, and try to deduce its general structure.