EXPLORATION 1. Color this copy of Pascal's triangle so that each odd entry is shaded. Find and prove any patterns that you observe. For instance,

- (i) which rows are completely shaded?
- (ii) how many entries are shaded in the *n*-th row?

(Remember to use the convention that the  $\binom{n}{k}$  row is the *n*-th row.)



**EXPLORATION 2.** Consider the following numbers

$$11^{0} = 1$$
  

$$11^{1} = 11$$
  

$$11^{2} = 121$$
  

$$11^{3} = 1331$$
  

$$11^{4} = 14641$$
  

$$11^{5} = 161051$$
  

$$11^{6} = 1771561$$

and compare them to the rows of Pascal's triangle. Precisely describe the pattern you see, and explain why it happens. What is the relationship between  $101^n$  and Pascal's triangle? What about  $1001^n$ ?

EXPLORATION 3. Generate the table of *harmonic differences* by making  $1/1, 1/2, 1/3, 1/4, \ldots$  the first row, and in each subsequent row record the differences of the adjacent numbers:

Rotate the table so that  $\frac{1}{1}$  is on top and the next row is  $\frac{1}{2}$   $\frac{1}{2}$ , then  $\frac{1}{3}$   $\frac{1}{6}$   $\frac{1}{3}$ , *etc.* Then multiply the first row by 1, the second by 2, the third by 3, *etc.* What is the relationship between this new table and Pascal's triangle? Prove it.