Lecture 44

Monday, April 20, 2015 8:00 AM

$$\frac{2\mu(\alpha)!!}{R} = \liminf \left\{ \frac{a_{k}}{a_{k+1}} \right| = \limsup |a_{n}|^{l_{n}}$$

$$\frac{R}{(l_{k})!} = \limsup |a_{n}|^{l_{n}}$$

$$\lim f(\lambda)! \left[\frac{a_{k}}{a_{k+1}} \right| = \limsup |a_{n}|^{l_{n}}$$

$$\lim f(\lambda)! \left[\frac{a_{k}}{a_{k+1}} \right| = \limsup |a_{n}|^{l_{n}}$$

$$\lim f(\lambda)! \left[\frac{a_{k}}{a_{k+1}} \right] \xrightarrow{l_{k}} \cos \sup f(\lambda) f(\lambda) = \sum |a_{k}|^{l_{k}}$$

$$\lim f(\lambda)! \left[\frac{a_{k}}{a_{k}} \right] \xrightarrow{l_{k}} \sum |a_{k}| f(\lambda) = \lim f(\lambda)! f(\lambda) = \lim f(\lambda)! f(\lambda)$$

$$\lim f(\lambda)! f(\lambda) = \lim f(\lambda)! f(\lambda)! f(\lambda)! f(\lambda) = \lim f(\lambda)! f(\lambda)!$$

Rink Suppose f: A
$$\rightarrow C$$
, let $B = \{x \in A\}$
let $g: B \rightarrow C$, $g(x) = f(x \in a)$. Then
 $\sum_{k=0}^{\infty} a_k (x \cdot a)^k$ is the Taylor suries for f conterned at a
 $(\Longrightarrow) \sum_{k=0}^{\infty} a_k x^k$ is the Taylor suries for g centered at ∂ .

Monday, April 20, 2015 8:09 AM

e.g.
$$f(x) = e^{x}$$
. Recall that $f'(x) = e^{x}$
and $f^{(L)}(x) = e^{x}$ so $f^{(L)}(0) = e^{0} = 1$.
Thus, the Taylor series for f contrad at 0 is
$$\sum_{k=0}^{n} \frac{f^{(L)}(0)}{k!} (x-0)^{k} = \sum_{k=0}^{\infty} \frac{1}{k!} x^{k}$$
$$= 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

which has radius of convergence of.
What does it convergents??
Taylor's Remainder The
 I as inder val in R , $B(a,r) \in I$.
Support $f: I \longrightarrow R$ has $ctr = f^{(L)}: B(a,r) \longrightarrow R$ for $L=1,2, \dots, n+1$. Then $\forall x \in B(a,r)$, $\exists d$ botween
 x and a s.t.
 $f(x) = \sum_{k=0}^{n} \frac{f^{(L)}(a)}{k!} (x-a)^{k} = \frac{f^{(m)}(d)}{(n+1)!} (x-a)^{n+1}$

Monday, April 20, 2015 8:19 AM

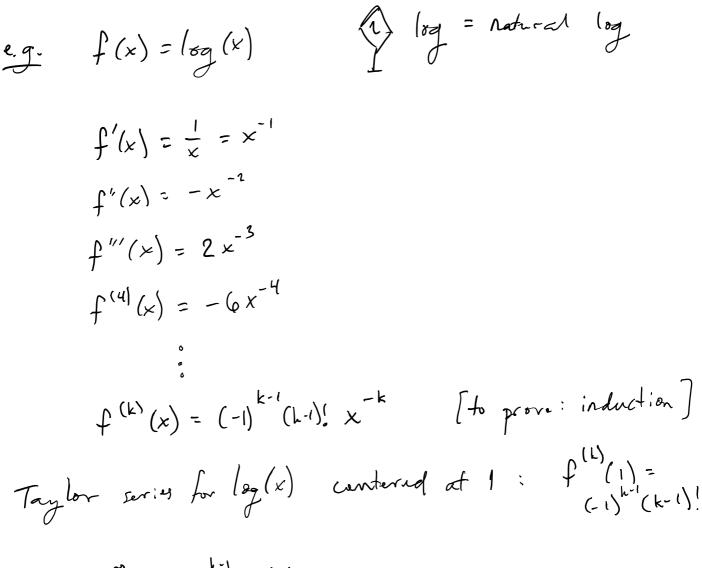
Let's apply Taylor's Remainder Then when
$$f(k) = e^{X}$$
,
 $I = R$, $r = \omega$, $a = 0$.
For $x \in IR$, $\exists d = 6/\omega = 0 \in x = r.f.$
 $e^{X} - \sum_{k=0}^{n} \frac{x^{k}}{k!} = \frac{e^{d}}{(n+1)!} x^{n+1}$.
Let $c > 0$, $Take = M > |x|$. Since $(\frac{1}{2})^{n} \rightarrow 0$ and
 $\varepsilon \cdot \frac{M!}{2^{2m-1}} > 0 = \varepsilon = 3N > M = r.f.$ if $n > N$
 $\frac{1}{2^{n}} \leq \varepsilon \cdot \frac{M!}{2^{2m-1}} (3M)^{n}$.
 $\left| \frac{e^{d}}{(n+1)!} x^{n+1} \right| \leq \frac{e^{|x|}}{(n+1)!} [x|^{n+1}$
 $\leq \frac{3^{m}}{(n+1)!} M^{n+1} = \frac{(3m)^{n}}{(n+1)!} \sum_{k=0}^{n} \frac{1}{(n+1)!} \sum_{k=0}^{n} \frac{1}{(n+1$

$$= \frac{(3M)^{m}}{M!} \frac{M^{m} M^{n+l-2M}}{(M+1)(M+2)\cdots(2M)(2M+1)\cdots} n (n+1)}$$

$$< \frac{(3M)^{n}}{M!} \frac{M^{n+l-2M}}{(2M+1)(2M+2)\cdots n (n+1)} \left[\frac{6}{c} \frac{M}{M+k} < 1\right]$$

$$< \frac{(3M)^{m}}{M!} \left(\frac{1}{2}\right)^{n+l-2M} \left[\frac{6}{c} \frac{M}{2M+k} < \frac{1}{2}\right]$$

$$= 2^{2M-1} \frac{(3M)^{m}}{M!} \left(\frac{1}{2}\right)^{n}$$



$$\sum_{k=1}^{\infty} \frac{(-1)^{k} (k-1)^{l}}{k!} (x-1)^{k}$$

$$= \int_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (x-1)^{h} \\ k=1 \\ Radius & \text{ conv}: \lim_{k\to\infty} \left| \frac{(-1)^{k-1}/k}{(-1)^{k}/k+1} \right| = \lim_{k\to\infty} \left| \frac{k+1}{k} \right| = 1 \\ \int_{k\to\infty} \frac{(-1)^{k-1}}{k} \int_{k+1} \frac{(-1)^{k-1}}{k} \int_{k+1} \frac{(-1)^{k-1}}{k} \int_{k} \frac{$$

Monday, April 20, 2015

8:46 AM

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^{k}$$

