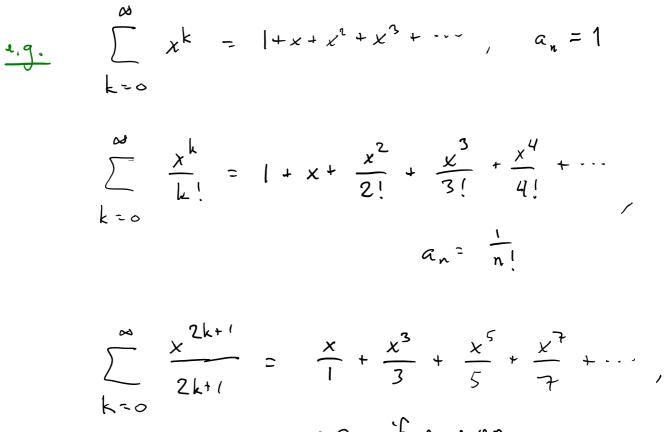
lecture 43

Friday, April 17, 2015 8:03 AM

For Cauchy sequences
$$(a_n), (b_n)$$
 define an
equivalence rulation $(a_n) \sim (b_n)$ iff
 $(a_n - b_n) = 0$
 $\lim_{n \to \infty} d(a_n, b_n) = 0$

Power Series A gover series is a series of
the form
$$x^{(N)}$$
 $a_{k}(x^{(N)})$ where $(a_{n})_{n=0}^{(N)}$ is a
sequence of $(cpx numbers)$ $x^{\circ} = 1$ even if $x=0$,
i.e. $0^{\circ} = 1$.
if $a_{k}=0$ for $k>N$, then this is just a polynomial
 $a_{0}x^{\circ} + a_{1}x' + a_{2}x^{2} + \cdots + a_{N}x^{N}$



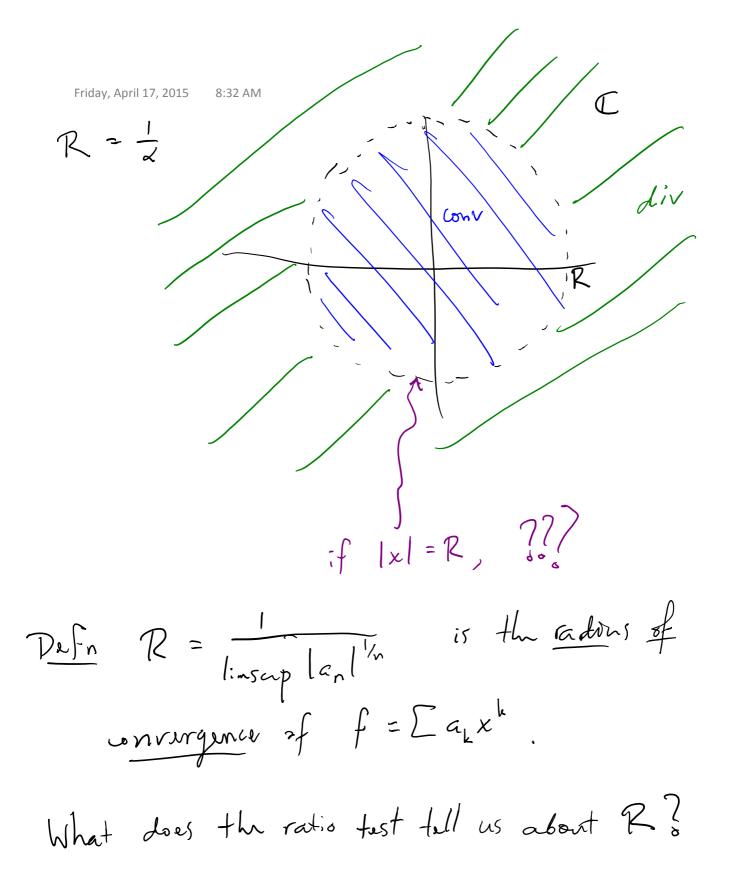
$$a_n = \begin{cases} 0 & \text{if } n \text{ even} \\ \frac{1}{n} & \text{if } n \text{ odd} \end{cases}$$

Let
$$f = \sum a_k x^k$$
 and for $F = IR$ or \mathbb{C} , define
 $X_f(F) = \{x \in F \mid \sum a_k x^k \text{ conneges}\}$
Thus f is a function $f \colon \overline{X_f}(F) \longrightarrow \mathbb{C}$
 $x \longmapsto \sum a_k x^k$

Friday, April 17, 2015 8:17 AM $e.g. f = \sum_{k=0}^{k} x^{k}$. If we substitute $r \in C$ into f, we get $\sum_{k=0}^{\infty} r^k$, the geometric series k=0for r! This converges exactly when |r|<1 so $X_{g}(C) = B(\partial_{1})$: divargas! converges. Then $f: B(0, 1) \longrightarrow \mathbb{C}$ $r \longmapsto \sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$ The let $f = \int_{k=0}^{\infty} a_k x^k \, dx a \text{ power series and define}$ $\alpha = \lim_{k \to 0} |a_n|^{1/n}$. Define $R = \begin{cases} 1/\alpha & \text{if } 0 < \kappa < \alpha \\ 0 & \text{if } \alpha = \infty \\ \infty & \text{if } \alpha = \infty \end{cases}$ Then $\forall x \in \mathcal{B}(0, \mathbb{R}) \subseteq \mathbb{C}$, from ungers in \mathbb{C} . If $|x| > \mathbb{R}$, then followingers (and $\mathbb{E}[a_k x^k]$ diverges).

Recall linsup
$$|a_n|^{V_n} = \inf \sin i$$

 $\sin = \sup \{|a_n|^{V_n} | n \ge m\}$
If $\lim |a_n|^{V_n}$ exists, then $\limsup |a_n|^{V_n} = \lim |a_n|^{V_n}$.
Pf Rost test for suries says f converges
Univer $\limsup |a_n x^n|^{V_n} < 1$ is diverges if
>1.
 $\lim \sup (|a_n|^{V_n} |x^n|^{V_n})$
 $\lim \sup (|a_n|^{V_n} |x|)$
 $\lim \sup (|a_n|^{V_n} |x|)$
Thus, dividing by $\alpha > 0$,
f converges if $|x| < \frac{1}{\alpha} = R$.



Friday, April 17, 2015 8:36 AM

$$f: \sum_{a_{k}x^{k}} Assume a_{k}to \forall k, xto$$

$$\lim_{x \to p} \left| \frac{a_{k+1}x^{k+1}}{a_{k}x^{k}} \right| = \limsup_{x \to p} \left(\left| \frac{a_{k+1}}{a_{k}} \right| |x| \right)$$

$$= |x| \lim_{x \to p} \left| \frac{a_{k}n}{a_{k}} \right|$$

$$= \frac{|x|}{\lim_{x \to q} |a_{k+1}|} \left| \frac{a_{k}}{a_{k+1}} \right|$$

$$\lim_{x \to p} \lim_{x \to q} \lim_{x \to q}$$

Friday, April 17, 2015 8:43 AM

Notation Let
$$R(\Sigma a_k x^k) = cadous of convaf
 $\Sigma a_k x^k$$$

$$\frac{x \cdot g}{for} \cdot R\left(\sum_{k} x^{k}\right) = 1$$

for $x \in B(0, 1)$ $\sum_{k} x^{k} = \frac{1}{1-x}$

•
$$R\left(\sum_{k=1}^{k} k\right) = \lim_{n \to 1} \left| \frac{n}{n+1} \right| = 1$$

$$a_n = n$$

$$\mathcal{R}\left(\sum \frac{x^{k}}{k!}\right) = \liminf \left|\frac{1}{\sqrt{n!}}\right|$$
$$\mathcal{R}\left(\sum \frac{x^{k}}{k!}\right) = \liminf \left|\frac{1}{\sqrt{n!}}\right|$$
$$\mathcal{R}\left(\frac{1}{n!}\right)$$
$$= \liminf \left|\frac{(n+1)!}{n!}\right|$$
$$= \liminf \left|\frac{1}{n!}\right|$$

50
$$\sum \frac{x^k}{k!}$$
 converges for $x \in B(0, \infty) = C$...