"Lecture" 42

Wednesday, April 15, 2015

Bolzaro - Waierstrass Thm Every bold aquena in C has a convergent subsequence.

Recall (X,d) is a metric space if $d: X \times X \longrightarrow \mathbb{R}$ s.t.

. d(x,y) > 0 tx,y & X

 $d(x,y)=0 \text{ iff } x=y \in \overline{X}$

 $d(x,y) = d(y,x) \quad \forall x,y \in \widetilde{X}$

 $. d(x,z) \leq d(x,y) + d(y,z) \quad \forall x,y,z \in X.$

A function $a: \mathbb{Z}^+ \longrightarrow \mathbb{X}$ is a sequence in \mathbb{X} .

Urita $a=(a_n)$ where $a_n=a(n)$.

A sequence (an) in X converges to a limit La lim an $\in X$ when $\forall \epsilon > 0 \exists N > 0 \text{ s.t. n>N implies } d(an, L) < \epsilon.$

A sequence (an) in X is (anchy if Hero JN>0 st. n,m>N implies d(an, am) < E.

Fact Every convergent sequence in Z:s Cauchy.

Pf As defore — raplace [| w/d, []

Dofin X is Cauchy complete if energy Cauchy sequence in X has a limit in X.

e.g. , R, C are Cauchy complete with respect to the metric induced by 11.

. Q w/ 11 metris cra not Cauchy complete. Take the decimal expension of $\sqrt{2}$ and let $a_n =$ truncation of this decimal of length n. $\sqrt{2} = 1.41421356...$

 $a_1 = 1$ $a_2 = 1.41$ $a_3 = 1.41$ $a_n \in \mathbb{R}$ $a_n \in \mathbb{R}$ $a_n = 1.414$ $a_n = 1.414$

·
$$X$$
 a discrete metric space:

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x \neq y \end{cases}$$

Cauchy sequences in a discrete metric space are the eventually constant sequences, which obviously converge to the eventual constant.

$$\begin{array}{l} \circ & (0,1) = \left\{ \begin{array}{l} x \in \mathbb{R} \mid 0 < x < 1 \right\} \\ d(x,y) = \left| x - y \right| \\ \left(\left(1 - \frac{1}{n} \right)_{n=2}^{\infty} \longrightarrow 1 \notin (0,1) \\ \left(\frac{1}{2^{n}} \right)_{n=1}^{\infty} \longrightarrow 0 \notin (0,1) \end{array} \\ \begin{array}{l} \left(\frac{1}{2^{n}} \right)_{n=1}^{\infty} \longrightarrow 0 \notin (0,1) \\ \\ So & (0,1) \text{ is not } Cauchy & complete. \end{array} \end{array}$$

Given a metric space X we can form its C_{auchy} completion X^* .

First, let $C_{X} = \{C_{auchy}\}$ requences in X of For Cauchy sequences (a_n) , (b_n) define an equivalence rulation $(a_n) \sim (b_n)$ iff $\{C_{A}\}$ $\{C_{A}\}$