Lecture 33

Sunday, March 29, 2015 11:27 AM

Communica of sequences
Performs
$$s = (s_n)$$
 converges to LeC if $\forall s > 0$ $\exists N r.t.$
 $\forall n \in \mathbb{Z}^t, n > N, |s_n - L| < \varepsilon.$
Call L the limit of (s_n) , writer
 $s_n \rightarrow L, (s_n) \rightarrow L$
 $\lim_{n \to \infty} s_n = L$
 $e.g. (s_n):(c) \rightarrow c$
 Tf Given $\varepsilon > 0$ let $N < 1$. Then for $n > N$,
 $|s_n - c| < |c - c| < 0 < \varepsilon$ so $(c) \rightarrow c$. D
 $\int \frac{1}{|s_n|} = \frac{1}{|$

eig. $\lim_{n \to \infty} \frac{1}{n} = 0$. The Gener 200 set $N = \frac{1}{2}$, a poi real number. If n > N, then $|s_n = 0| = |\frac{1}{n} = 0| = \frac{1}{n} < \frac{1}{N}$ (blue n > N > 0) $= \frac{1}{1/2} = E$. Thus $\frac{1}{n} = 0$. Sunday, March 29, 2015 12:04 PM

 $\lim_{n \to \infty} \frac{2n + 3n^2}{3 + 4n + n^2} = 3$

Stratch Let EDD. Set N= _____, a protect # . If n>N, then

$$\left|\frac{2n+3n^{2}}{3+4n+n^{2}}-3\right| = \left|\frac{2n+3n^{2}}{3+4n+n^{2}}-\frac{9-12n-3n^{2}}{3+4n+n^{2}}\right|$$

$$= \left|\frac{-9-10n}{2+4n+n^{2}}\right|$$

$$= \left|\frac{-9-10n}{2+4n+n^{2}}\right|$$

$$= \left|\frac{1+10n}{n^{2}}\right| (6/2-n>0)$$

$$\leq \frac{9+10n}{n^{2}} (6/2-3+4n+n^{2}>n^{2})$$

$$\leq \frac{n+10n}{n^{2}} [as long as N>8 \Rightarrow n>9]$$

$$= \frac{11n}{n^{2}}$$

$$= \frac{11n}{n} < \frac{11}{N}$$

$$= \varepsilon [as long as N>8 = N>9]$$

$$\sum N = \max \{8, 11/2\} \text{ will well.}$$