Where is I continuous! A At x=0

Is
$$\lim_{x\to 5} I(x) = I(5) = 0$$
?

We can never get only rational #8 6h 5-8 and 5+8, thus I is not cts at 5.

Sim. larly, I is not its away from
$$O$$
.

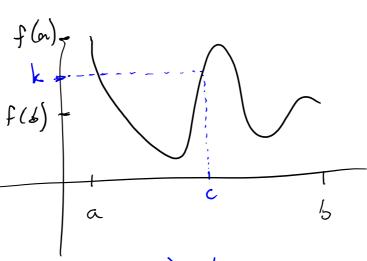
But $\lim_{x\to 0} I(x) = O = I(0)$.

If Given
$$\varepsilon > 0$$
 set $S = \varepsilon > 0$ and assume $0 < |x - 0| < \delta = \varepsilon$. Then

$$|I(x)-0| = \begin{cases} |o| & \text{if } x \in \mathbb{R} \\ |x| & \text{if } x \in \mathbb{R} - \mathbb{R} \\ |x| & \text{if } x \in \mathbb{R} - \mathbb{R} \end{cases}$$

Thus
$$|I(x)| < \varepsilon$$
 whenever $0 < |x| < \delta = \varepsilon$, so $|I(x)| = 0$.

(Intermediate value theorem)

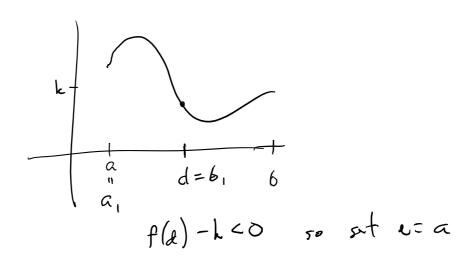


f(c) = k

For $a, b \in \mathbb{R}$, $a \in b$, $f: [a, b] \longrightarrow \mathbb{R}$ continuous, let $k \in \mathbb{R}$ be strictly between $f(a) \otimes f(b)$. Then 3 c ∈ (a, b) st. f(c) = k.

Pf Set $a_0 = a$, $b_0 = b$. Given a_{n-1} , $b_{n-1} \in [a,b]$ with $b_0 = briefly b/w f(a_{n-1}) & f(b_{n-1})$, let $d = \frac{a_{n-1} + b_{n-1}}{2}. \quad \text{If } f(d) = k, \text{ then wire done.}$ If $f(a) \neq k$, then with f(a) < k or f(a) > k.

Let $e = a_{n-1}$ or b_{n-1} so that f(e) - k and f(a) - khave apposite signs.



Then h is strictly between f(d) & f(e). Set the smaller of de to be a_n ; the larger to be b_n 26 serve that $a_{n-1} \leq a_n \leq b_n \leq b_{n-1}$ and $|b_n \cdot a_n| = \frac{1}{2} |b_{n-1} \cdot a_{n-1}|$ Either this privass terminates in finitely many steps or we get $[a,b] = [a_0,b_0] = [a_1,b_1] = [a_2,b_2] = \cdots$ $\sqrt{b_n-a_n} = \frac{1}{2^n}(b-a)$ and k is always strictly $b(a_1,b_2) = b(a_2,b_3) = b(a_1,b_2)$. Thus

Set $c = \sup \{a_0, a_1, a_2, \dots \}$ (which exists b/c $\{a_0, a_1, \dots \} \text{ is } bdd \text{ above } [say by b] \text{ and }$ $\mathbb{R} \text{ is complete.}$

Claim f(c) = k.

Let $\varepsilon>0$. Since f is cts, it is cts at c, so $3\varepsilon>0$. It. $\forall x\in [a,b]$, if $|x-c|<\delta$, then $|f(x)-f(c)|<\varepsilon/3$. Take $n\in \mathbb{Z}^{+}$ so that $|f(x)-f(c)|<\varepsilon/3$. Then $|a_n-c|\leq |a_n-b_n|=\frac{6-a}{2^n}<\delta$.

50
$$|f(a_n) - f(c)| < \epsilon/3$$
. Similarly,

 $|f(b_n) - f(c)| < \epsilon/3$. Thus

 $|f(b_n) - f(c)| < \epsilon/3$. Thus

 $|f(b_n) - f(c)| + f(c) - f(a_n)|$
 $|f(b_n) - f(c)| + |f(a_n) - f(c)|$
 $|f(b_n) - f(c)| + |f(a_n) - f(c)|$
 $|f(a_n) - f(c)| + |f(a_n) - f(c)|$
 $|f(a_n) - f(c)| + |f(a_n) - f(c)|$
 $|f(a_n) - f(c)| + |f(a_n) - f(a_n)|$
 $|f(a_n) - f(c)| + |f(a_n) - f(a_n)| + |f(a_n) - f(a_n)|$

Now $|f(c) - f(a_n)| + |f(a_n) - f(a_n)|$
 $|f(a_n) - f(a_n)|$

class notes Page 113

f(c) = k

Application Every old degree polynomial has a root in R.

Pf Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ with $a: \in \mathbb{R}$, $a_n \neq 0$, $n \neq 0$.

Thun $f: \mathbb{R} \longrightarrow \mathbb{R}$ is its. By IVT, to get $ce \mathbb{R}$ s.1. f(a) = 0, it suffices to find a, be \mathbb{R} s.t. f(a) < 0, f(b) > 0.

Check $\lim_{x\to\infty} \frac{f(x)}{a_n x^n} = 1 = \lim_{x\to-\infty} \frac{f(x)}{a_n x^n}$

Thus for 1x1 sufficiently large, f(x) & anx have
the same sign. Since anx has opposite signs for
x>0, x<0, we get that f(x) switches signs
as well.