Lecture 24

I. e.

Saturday, March 7, 2015 5:54 PM

Topology & density:
$$\mathbb{R} \twoheadrightarrow \mathbb{C}$$

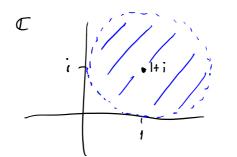
Both $\mathbb{R} \And \mathbb{C}$ have an absolute value [] which then
gives distance: $|x-y|$ is the distance $\delta/\omega \propto \varepsilon y$.
This allows us to make some unified definitions for each of \mathbb{R} , \mathbb{C} :
Define let $F = \mathbb{R}$ or \mathbb{C} . Then the open ball centured at $a \in F$
of radius $r \in \mathbb{R}_{\geq 0}$ is
 $\mathbb{B}_F(a,r) = \mathbb{B}(a,r) = \{x \in F \mid |x-a| < r\}$.

So
$$B_{R}(1, \frac{1}{2}) = \left\{ x \in \mathbb{R} \left(\frac{1}{2} \right) \right\}$$

distance less then 1/2 from 1

$$B_{R}(1, \frac{1}{2}) = (\frac{1}{2}, \frac{3}{2})$$

$$B_{\mathcal{T}}(1+i,1) = \{x \in \mathcal{T} \mid |x-(1+i)| \leq 1 \}$$
distance loss than 1 from 1+i



An open set in F is a (possibly infinite) union of open balls.
e.g. . In R, (a, b) = B((a+b)/2, |a-b|/2) is always open
. Ø is open b/c its the empty union!
. (a, b) x (c, d):
$$\leq C$$
 is open, but we have to use
infinitely many balls!
Challenge Find an explicit
collection of balls whole union $\frac{1}{a}$ is
is $(a, c) * (c, d)i$.
Prop. Every nonempty open set contains infinitely many points.
If for each integer n>2, $a + r/n \in B(a, r)$. I.
Cor is $\leq F$ is not open.
The $\emptyset \neq F$ are open
. as bitrary unions of opens are open
. finite intersections of opens are open
. finite intersections of opens are open
. i.e. intersections of finitely many
Aside This means that F with its open subsets is a spential.
Pf Reading. II
But note: $\bigcap B(a, V_n) = \{a\}$, so finite intersections is assential.

Saturday, March 7, 2015 6:26 PM

Define The closure of a set
$$A \subseteq F$$
, dusted \overline{A} , is the smallest
closed subset of \overline{F} containing A .
e.g. $\overline{B(a, r)} = D(a, r)$
Thefine $A \subseteq \overline{F}$ is dense if $\overline{A} = \overline{F}$.
More generally, if $S \subseteq \overline{F}$ is closed, say $A \subseteq S$ is dense in S
if $\overline{A} = S$.
Them $Q \subseteq \mathbb{R}$ is dense in \mathbb{R} .
Define Let $A \subseteq \overline{F}$. A point a is in the interview of A if $\overline{J} = O r/r$
 $B(a, r) \subseteq A$. A point a is on the boundary of A if $\overline{J} = O r/r$
 $B(a, r) \subseteq A$. A point a is on the boundary of A if $\overline{J} = O r/r$
 $B(a, r) \cap A + \emptyset$ and $B(a, r) \cap (\overline{F} \cap A) \neq \emptyset$.
Interview pts of A ?
Them $\forall A \subseteq \overline{F}$, $\overline{A} = A \cup Bd(A)$
 Pf Reading.
So this says $\overline{Q} = \mathbb{R} \implies \forall x \in \mathbb{R} \cup B(x, r) \cap Q \neq \emptyset$,
and $B(x, r) \cap (\mathbb{R} \cup Q) \neq \emptyset$ for all $r \ge O$.
In particular, $\forall r \ge O$ and any $x \in \mathbb{R}$, there is always
a rational number within r of x