Lecture 21

Monday, March 2, 2015 7:55 AM

The Complex Numbers IR is complete & ordered I SER bodd above, then But sup (5) exists and is an elt of R TR lacks rosts to many polynomials, u.g. if a>0, then $x^2 + a = 0$ has no solvins! a Idea of I, the complex numbers: build to from TR so that it is a field containing solves to x2+a=0. Starting point: C: R×R x²=-a let the first word act like R Use the second coord so that $(0, \sqrt{a})$ to solve $x^2 = -a$, i.e. $(0, \sqrt{a}) \cdot (0, \sqrt{a}) = (-a, 0)$

Monday, March 2, 2015 8:11 AM

$$(at's set (a, b) + (c, d) = (atc, b+d),$$
What should $(a, b) \cdot (c, d)$ bol 1:42?
 $(a, b) \cdot (c, d) = ((a, 0) + (0, b)) \cdot ((c, 0) + (0, d))$
 $= (a, 0) \cdot (c, 0) + (a, 0) \cdot (0, d),$
 $+ (0, b) \cdot (c, 0) + (0, b) \cdot (0, d),$
 $= (ac, 0) + (bd, 0),$
 $= (ac, 0) + (bd, 0),$
 $= (ac + bd, ad + bc),$
 $(a, 0) solves x^{2} = a^{2},$
 $(a, 0) (0, d) = (0, ad),$
 $(a, 0) (0, d) = (0, ad),$
 $(a, b) \cdot (c, d),$
 $(a, c - bd, ad + bc),$

We can then chuck that
() +, · are comm assoc binary ops
() · distributes over +
() (0,0) is the addition identity
() - (a,6) = (-a,-b)
() (1,0) is the multiplicative identity
In order for (+6 be a field, we need multiplicative identity
In order for (+6 be a field, we need multiplicative identity
In order for (+6 be a field, we need multiplicative identity
In order for (+6 be a field, we need multiplicative identity
(ac - 6 d, ad + be) = (1,0) for (1,d)
(ac - 6 d, ad + be) = (1,0)
(ac - 6 d, ad + be) = (1,0)
(ac - 6 d = 1 for ad + 6 c = 0)

$$\frac{-a^2d}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

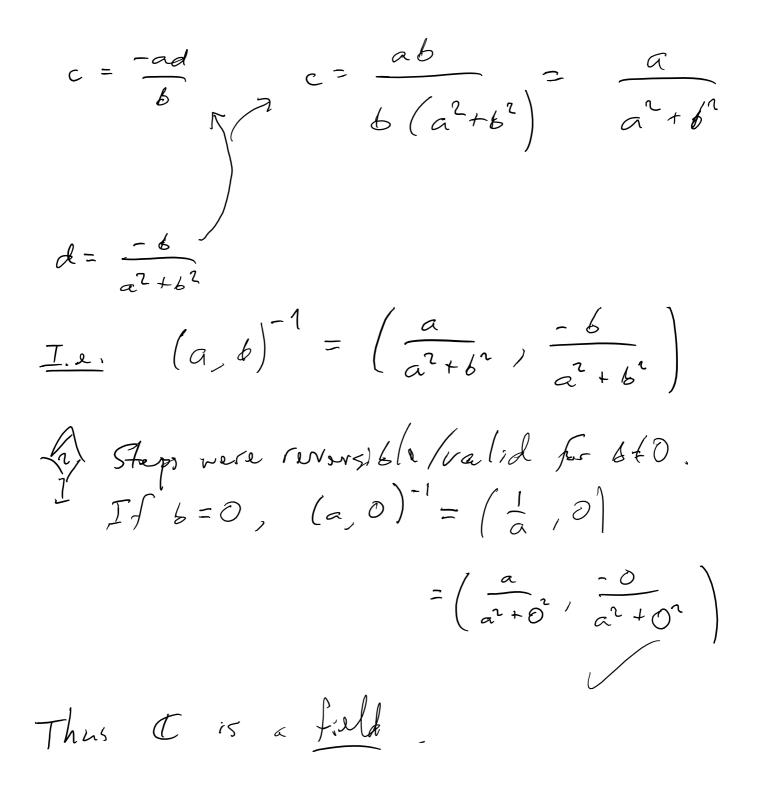
$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$

$$\frac{-a^2}{6} - 6d = 1 for ad + 6 c = 0$$



Monday, March 2, 2015 8:33 AM

Special way
$$f$$
 writing eith of C :
For real #5 a, b , (et $a + bi = (a, b)$.
Note then that $0 + 1 \cdot i = i = (0, 1)$
and $(0, 1)$ solves $x^{2} + 1 = 0$ i.e. $x^{2} = -1$
thus $i^{2} = -1$. Of $con(x)$, $(-i)^{2} = -1$ as will.
Up have $(a+bi) + (c+di) = (a+b) + (c+d)i$
 $(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$
 $ac + a \cdot di + bci + bd(i)^{2}$
 $(ac - bd) + (ad + bc)$
Note $(a+bi)^{-1} = \frac{a-bi}{a^{2}+b^{2}} = \frac{a}{a^{2}+b^{2}} - \frac{b}{a^{2}+b^{2}}i$
 C bir "imginaryaxs"
 $i = \frac{a-bi}{1=(+0)i} = \frac{a}{a} = \frac{a}{a^{2}+b^{2}}i$

Ļ

Monday, March 2, 2015 8:41 AM

In
$$Re: \mathbb{C} \longrightarrow \mathbb{R}$$
, $Re(a+bi) = a$
is the real part of $a+bi$.
 $Im: \mathbb{C} \longrightarrow \mathbb{R}$, $Im(a+bi) = b$
is the imaginary part of $a+bi$.
 $\widehat{()}: \mathbb{C} \longrightarrow \mathbb{C}$
 $\overline{a+bi} = a-bi$ is the complex injugate
of $a+bi$.
 $The If x=a+bi$, then $x:\overline{x} = a^2 + b^2$
and $x^{-1} = \frac{\overline{x}}{x:\overline{x}} = \frac{a-bi}{a^2+b^2}$

